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Chapter 1

f:
Introduction !,l

In this chapter we first present in Sections 1.l-1.7 the abstracts of _he

individual papers that form the reaalning 7 chapters of this report. Each

• paper D which is in the form of a manuscrlpt for publtcatlon in a technical

Journa,, has been writteu by one or more mmbers o[ our research group. Most

• of these _nuscrlpts are being reviewed, and their final forms will be

different than those presented here. _

In Sections 1.8-I,I0, we briefly review the work that was under way i

during the contract, but which has not progressed sufficiently for the writlng _ i

of susmarlzing aauuscrlpts. One of the projects, "On Cloud Street Development

from the Inflection Point Instability" is the MS thesis topic for Mr. Dave t

Stensrud and another one, "Wavenuaber and Amplitude Vacillation &rising from

Ti_-Dependent Flows" is the PhD thesis topic for Mr. Steven Feldstein. The

last study, "Modeling the Index Cycle Variations" is a postdoctoral project

fo= Dr. _lar_y _nderson. The reports suwaarising these studies will be _

tincluded in tha final report for the present contract, NAS8-36150. •

• I

?

JL- . ,i _- I _ ._ , _ ,,. _ ' 'ill II llI II
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I.I The Effect of Topography on the Evolution of Unotable Disturbances in a

Baroclintc Atmosphere

A two-layer spectral quasi-geostrophic model is used to simulate the

effects of topog-aphy on the equiiibria_ their stability, and the long-term

e'_olutlon of incipient _,ustable waves. The flow is forced by latitudinally ,

dependent radiative heating. Dissipation is in the for o£ Rayleigh

friction.

An analytical solution is found for the propagating finite-amplitude

waves which result free baroclinic iustability of the zonal winds when

J topography is absent. The appearance of this solution for wavelengths Just

,_l longer than the Rossby radius of deformation and disappearance of ultra-long
5-

_'- wave-lengths is interpreted in terse of the Hopf bifurcation theory of Marsden

and NcCracken (1976). Simple dynamic and therrJ_tyn_ttc criteria for the

existence of periodic _ossby solutions are pr_sented. & Floquet stability

analysis shows that the waves are neutral.

One result of the introduction of topography is multiple steady solutions

for certain values of external parameters. Metast_able high index equilibria i

!
are especially prominent when the zonal _rlnd shear is close to resonance. I

The nature of the £orm-drag insro_.lity of h_gh-index equilibria is _

investigated. It is shown that the proxiaity of the equilibrium shear to a

resonant value is esse_clal for the iustabll£ty_ provided t_e equilibrium

occurs at a slightly stronger shear than resonance.

The barocllntcally unstable _vem with topography evolve with l_creaelng

radiative forcing via a series of period douhlLngsp u opposed to Hopf
P

_i bl_urcatlona, to an aperiodic state. A Floqu_t stability analysis of the

"l successive p_riodlc solutions f&cilLtated an a_curate d_termtLnation of the
J t

• critical hearings. Feigenbauw,'e asymptotic relation _as closely _ollo_d.

-!
, i
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i,
Prelialnary calculations with less severe spectral truncations suggest that _t

Felgeubaum's relation holds independently of the truncation.

• • • _ I ) J lU.... In
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1.2 The Hadley and Rossby Regimes in a Spherlcal Atmosphere

The properties of the steady Hadley and Rossby regimes for a theraally-

forced rotating fluld on a sphere are studied, The Cwo-layer modified

geostrophlc _odel of Lorenz (1960) is employed which allows for thermal

advectloa by the dlvergent wlud and time dependent static stability. Heating

processes are parameterized using the Newtonian approximation and Raylei_h

friction is accounted for. The equations are transformed to spectral fora

using spherical haruonics and then truncated retaining a simple axlsyunetric

state and initially one wave.

A time independent Hadley crlculatlon is obtained which is _utral t_

axlsynetrlc disturbances but unstable to wave-llke perturbations for

intermediate values of the merldiocal temperature gradient indicating the

existence of both an v,p_er a_Ad lower sy_etrlc Hadley reglma. An analytlcal

solution for the 8tea_y Rossby circulation is deteratned for values of the

merldlonal teapereture gradient where the Hadley reglmo is unstable. Linear

perturbation theory is used to show that within the steady Rossby regime two

or sore waves cannot exist slaultaneously. Thl8 hmplle8 that the transition

frou on_ wavenuaber to another occurs abruptly as the mrlodional teaperature ,,_, ,_

gradient 18 varied in contrast to the fludlng of Lorenz (1962) for the

rotating dishpan. For saall values of dlsslpatlon and forcing, the steady

ltossby regi_ Is replaced by a doubly pezlodlc time dependent clrculatlon
_d

consisting of both amplitude vaclUatlon and wave propagation. _18o. there is

very good agreemant between the wavenunber of smx£mm Instabillty for the

steady _uiley regll and the wavanuuber observed in the steady Roasby togas.
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1.3 A Paraaeterization Technique for Nonlinear Spectral Models

An objective perameterizatlon technique is developed for general nonlinear

hydrodynaaLcal syeteas. The typical structure of these hydrodynamical systeas,

4. regardless of their complexity, is one in which the rates of change of the

dependent variables depend on h_mogeneous quadratic and linear fores, as well

as on inhoaogeneous forcir_ ceres. As _ prototype of the generic problem

containing this typical structure, we apply the parameterisation technique to •

• various three-component subsets of a five-component nonlinear spectral model of
¢

forced, dissipative quasi-geostrophic flow in a channel. The results obtained |

here lead to specification of the necessary dace coverage requirements for _ !

applying the technique in general. ! _

The emphasis of the parameterlsatlon approach Is on preserving the
4

behavior of the steady states by incorporating in the paranueterized models

Inforaation concerning the topological structure of the orlgiual solutions.

The paramterized spectral components are expressed as power series involving

the retained coaponents, and it is found that the optimum para_teri_ation is

obtained when these series are terainated at quadratic terns. The values of :i

the coegficients in these series are determined free the mo_ents of the _ _i
original set of spectral components over some range of forcing.

- For testing convenience, the 1orients are coaputed using the steady

solutions to the original five-component sodel as data. This is accomplished

by assuaing that the values of the sons1 forcing rate obey seas standard

8tst_stical dLstrlbutlon_. In reglon8 of phase apace in which sultlple steady

solutions occur, the likelihood of the occurrence of any one solution say be

velghted aocording to its stability. Thus, the data sets can be viewed as

8ilulatinE either idealised data, in which both stable and unstable solutions

_ rut_ .. _ ..... --
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are permlttcd, or observational data, In whleh only stable solutlons are per- I

mltted. Special attention is paid to the sensitivity of the parameterlzatlon

to data coverage requlreunts, and to the relatlon of these requlrewnts to
i

the general structure of the solution surfaces. Signlflcently, it is shown

that with sufficient data coverage, a successful parsmeter_gatlon may be

obtelned even In the more restrictive cue when only stable (observable)

solutlons are used as data.
e

;7
4

' i

• i

q
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1.4 A Numerical Study of Global Axlsyzsetric States and Their Stability to

Quasl-Geostrophic Disturbances

A steady, axisymmetric model of the general circulation is developed as a

basis for climate stability studies. The model includes the effects of

heating, rotation, and internal friction, but neglects topography. It is

assumed that the axisymmetrlc flow may be modeled by making the Boussinesq and

deep convection approximations. The hydrostatic assumption is not made, thus

• permitting the advective term to be included in the vertical equation of

motion. The initial set of five primitive equations is reduced to three

equations in terms of the zonal velocity, meridlonal streamfunction, and the

potential temperature perturbation. _

The three dependent variables are assumed to satisfy appropriate spectral
t

expansions, and the three equations are then arranged into a Galerkln I

representation. The number of degrees of freedom retained in the expansions _ I

Is restricted to eight waves or lees, which places the model in the class of _
|

highly truncated spectral models.

The motions are forced by a specified heating dlstrlbutton and dissipated

through an eddy mixing coefflclent formulation, The specified beating

t.
distribution is an idealized pattern based upon the observed net heating x,

• field. The eddy mixing coefficients are chosen to be representative of the I
t

observed circulation.

The axisymRtric circulation is teated for atablllty to quasi-Seostrophic
!

dleturbancea. The original sat of five primitive equations Is reduced to a

slnaXe equation sovernlng the evolution of quasl-postrophlc potential

vc_'tlclty. Thls equation is Xtnearlzad about the axlsyunetric state, and the

stability of the disturbances is found by examining the eisenvalues

1986002282-010
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associsted with each disturbanc:. The longitudinal resolution is truacatfd

beyond the lSth lonsitudinal wave. Ii-

The application of the Boumslnesq, deep convection, and quasi-geost_-3phlc

sssuaptione limits the rangu of the heatins s_d rotation rates. _..,c v, _ _s

not too far froa typical at_ospherlc va!ues, the model produces a stal_lit)

boundary separatins Hadley from Roeeby flow. The boundary is character._.zed by

a particular value of vtrtical wind shear, vhtch euUeets that baroclinf

iuetabillty is the primary wchanism foe: the lo|a of stabiticy. The Initial

growth rates are largest for lonsitudleaL _vu 4-7, also in qreement with i

studies of barocUnlc instability.

!

J

, !
i
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1.5 On Cloud Street Development in Three Dimensions: Parallel and Raylelgh

InstabiZitics

Expected orientation anglem and horlzontal wavelengths of boundary layer

rolls or cloud streets are detere.tned froa an analysis of a truncated spectral

nodal of three-diuensional shallow _oist Boussinesq convection in a shearina"

environment. The nonlinear secondary circulations are organized into two-

dimensional forms by the height-dependent wind field, and :hess rolls nay

develop from the combined effects of thermal stratification and Ran wind

shear. The associated thermal and pa-allel ins_abtlity mechanises are shown i
|

to be special cases of a single one. Only oat mode is found when the _ !

stratification is unstable or neutral D but a second one is possible when the ¶ t
/

stratification is nakly stable. The first corresponds to relatively broadly i
J

spaced rolls having orientations for which the Fourier component of the roll-

perpendicular shear is nearly zero, but the second corresponds to relatively

narrowly spaced rolls having orientations for which the Fourier coefficients

of both the perpendicular and the parallel components of the shear are nearly

equal, t _

1986002282-012
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1.6 Cloud Streets During KonTur: A Comparison e£ Prsllel/Ther-al

W,
InstabiIity Nes with Observations

Estimates of cloud street seonetry produced by a sodet of the parallel/

thereat instability modes of shallow convection (Shlrer, 1985) are coapared

with observations obtained during the 1981 KonTur experi_nt (Brier and

Grant, 1985). Good agreeunt be :,sen the uodeled end observed ori_ntetlon

angles, wavelengths and Reynolds numbers ere found when the streets are
e

assuud to derive their energy from the average shear and the lowest order

sins terms of a Fourier expansion of the man wind profile (or equlvalently

frou the lowest order cosine tutus of the man shear profile). The modes

assoclat_d with the cosine terms of the wind prof4te (or the sine tet,_s of the i
/

wind shear profile) do not agree NU with the observations. These .-esults

suUest that the boundsr7 layer rolls observed during KonTur sight i_ve
t

developed ovin._ to 8 coubined parallel/thon_tl instability orl|lnating

,
primarily frou the cosine term of the mbient roll-parallel win, shear.

/

I

t

I

4
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1.7 On the Nonlinear Characteristics of the _isylmetric Flow Regime:

Cylindrical and Hemispheric Systems

The physlc_l _!a:ionship between steady axisymaetrtc flows that Night be

obvserved in the atmosphere and in laboratory vessels is investigated

theoretically. This is accomplished by comparing both the nonlinear structure

ar, d the thera_l forcing mechanlsas in two truncated spectral models of flow in
(

the atmosphere and the rotating laboratory cylinder respectively. Under

, statically stable conditions, the response of tL_e internally-forced spherical f

model (which is developed here from a set of new orthonoraal basis fun=tions)

exhibits steady behavior different fzom that .% the e-.ternally forced

c)lindric_l sodel. Two regions of _Itiple steady solutlons occur in the _

cyllu_drical tod_l, under stable conditions, that are not found in the

spherical one. _;-.,._ vosa_-ble physical relevance of these _Itiple solutions is

investigated by deter_inin& their location in parameter space wi'.h respert to

the classlcal _dleT-Ro. 3by trans_:._ curve. The results suggest that the i

wave flow regims, in an annulus, might d_-._1op _atastrophically when an upper

sy_tric flow ceases to exilt. Further exaa_,_t[on of each _odel reveals i

that steady behavior is linked to th._ hydrostatic ass-_pc_on and so to .'.he

aspect ratio and basis functions of each system. The results suggest that the

• runner by which regime transitions occur tn exte_nally forced vessels atgh_ _
3

differ from tho_a for the Intarn¢lly (and externally) forced atmosphere.

•_ Si_ntflcan_.ly: Internally forced laboratory vessels a_ found to have the _

Igreatest utility for studies _f large-scale axlsy_Ntrlc flow reglmss in the

atmosphere. I'

I
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1.8 Ou Cloud Street Development from the Inflection Point Instability [!
The inflection point instability as a formation mchanlsm for cloud

sLreets in a neutral atmosphere Is studies with a low-order spectral model.

Since one vertical wavenumber Is not sufficient to capture the inflection

point instability (Shirer, 1985 and Chapter 6). we develop t_o versions of

the model: one elch ._-o vertical wavenuabers, and the other with three
v

verticaI wavenumbers. The _near stability analysis for both mdel versions

yields a single polynomial in the squared critical Reynolds number (Rec2) that .

,i depends on the Fourier coefficients of the wind profile. Solving for the .

i minimum acceptable value of Rec 2 (Rec2)O) yields the preferred values of the

orientation ,_agle (e) and the aspect ratio (A). and hence gives the prefezred

i geosetry of the streets.

To test the model results, we use s_veral idealized wind profiles as well

as several observed wind profiles; their Fourier coefficients determine the

miniuua value of Re c. Tn previous studies, the Elman profile has been used

primarily to examine the inflection point instability, and orientation a_gles

e and aspect ratios A have been calculated (Lilly, _e66; Asai and NakasuJi,

1973). In the present model, the preferred values of e and A associated with

the gkemn profile agree well with these previous results.
i-

The observed wind profiles are taken from the 1981 gonTur experiment " i
t

i (Bruuer and Grant, 1985). KonTur was a Wut _trman con_ection experiment in

which high resolution wind data was collected by aircraft flying through the

boundary layer. We find that the preferred values of e and A given by the

KonTur data on days containing cloud straeta agree with the observed values.

Indeed, the two wavenuaber version of the a_del does very well in determining

the preferred orientation angles and aSl_Ct ratios, although greater t

confidence is maintained with the _hree wsvanmsb_r version. !

1986002282-015
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_, One form of low vertical resolution data that is rcutlnely available is
3

_ radiosonde data for which the rind observations are given every I000 ft. This

_ data ls, in generalp too coarse to produce reliable preferred values of 0 and :
i.

A during cloud street outbreaks. Xowever, It say be possible to use a cubic

spllne to enhance the data and adjust the preferred values of O and A. In '

thls ray the boundary layer vlnd profile can be laproved by using the spllne

profile thac yields the ol_served values of 0 and A on days containing cloud

!
streets. Thls hypothesis is currently under Investigation and the Initial

wm

results are indefinite.

"I9860C)::>::>8::>-0"I6
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1.9 Wa,enumber and Amplitude Vacillation Azlsing from Tiae-Dependent Flows

The fini_-e-amplltude stability of planetary scale waves is being studied

to show that synoptic scale amplitude and wavenuaber vacillation can develop

from the instability of the planetary waves, A two-layer quasl-geostrophlc

aldlatltude B-plane model Is used. Both forced and free plar,_tary scale
6

basic state waves are being considered.

An asyaptotlc series expanslo_ ts usQd to study the weakly nonlinear

finite msplltude evolution of synoptic sCale perturbations, b_n the

planetary wave is forced, the synoptle -_-_I=__- perturbations experience a slow

amplitude vacillation cycle. On the other band, when the planetary wave is

free, the weakly nonlineer theory breaks down due to an explosive finite

amplitude instability of the perturbatloa.

The weakly nonlinear theory Is then used to specify a truncation for a
I

coapletely nonlinear spectral model. Both the lower and hlgher order modes of

the weakly nonlinear solutions are retained in the spectral model. Thls Is _

because the higher order modes are found to play a crucial role In the

evolution of the lower order modes.

The spectral model results for the forced planetary wave case are similar

to those of _he weakly nonlinear theory. When the planetary wave is free, the
{

are quite different. The synoptic scale modes underwent a slow, !
results

regular wavenuaber vacillation cycle t___twas possible only due to the

explosive instability of the basic wave. _ i

Presently, _ are studying these t_= vacillation cycles in detail and ve

are trying the understand why the forced and free basic wave cases are so

dlfferent.

i
J
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i. I0 Modeling the Index Cycle Variations

Initially we expected that a forecast modal of the index cycle could be

built from the emplrlcal orthogonal fuuctlon_ (EOF) of the 500 mb height

; field, but thls has not proved to be the case for two reasor- First the

EOF'8 could readily describe the blocking situations, but no obvious choice of

EOF'8 seemed to be adequate in describing the high index (zonal) flows. The

second obstacle was centered about the problem of errors introduced into the

interaction coefficients that were derived from the EOF fields. The domain

area of the study was the NMCoctagon, and the only feasible way to obtain the

horizontal derivatives of the EOF's (which are necessary for the celculatlon _

of the interaction coefficients) was to use finite differencing. This in turn '

introduced errors into the interaction coefficients. No explosive

instabilities occur with these errors, as the errors cancel each other in the

mean kinetic energy and vorticiCy equations, but errors in phase speeds did i

occur. It did not seem fruitful co pursue this approach, as testa made with a J1
,_ very low order model confirmed the decay in predictability solely due to ;

.rrors in the interaction coefficients. _

Instead, we turned our efforts to studying the baroCropic vortlcity

equation. This model is baaed on the divergent form of the quasi-geostrophic _
I

model, 88 used by Charney and DeVore (1979). However, the model has been t

r_st in spherical harmonics for use over the Northern Hemisphere. This will

allow comparisons between observations and forecasts. A higher number of

degrees of freedom have been Incorporated--Chece are 15 modes available

(wsvenumbers 1-5 in both the mridional and zonal directions), along _.Ch

direcL forcing of ascb mode and all possible terrain modes for this

truncaClon. The model was tested for accuracy in conserving energy and

vorticity, and found to be ready for use with analyzed data.

1986002282-018



t

16

The vezy low order barotroptc results were i._ agreement with those of
i

] ¢harney and DeVore (1979) and also ILart (1979). There were regions of

multiple solutions, but the steady solutions that were analogous to high and

low index patterns were stable to perturbations. Stable periodic solutions are
i

probably present, but were not _ound (slLtlar to llartOe results). It has been .

} proposed by both Charney and liart that barocllntc instability is necessary to

i provide the tnstabilty that moves the atmospheric state between index

patterns. Accordingly, some work was done to seek an appropriate low order

model that Includes baroclintc instability. There seems to be such a suitable ,

aodel developed by Lorenz (1984), although it is still being refined. It Is

two-level and incorporates parauetertzed diabatlc effects.

The next step will be to run the barotroplc model for extended periods,

and to look at the behavior of the Index. Oscillations will probably not he

present, as these states may be stable. The sam modeling approach as that
F

used with the Lorenz two-level model should yield oscillations.

4

1

! !
l k

! " 1I
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1. Znt roduction

& great deal of attention hae been devoted, in recant years, to the

conditions under vhLch mathematical fluid dynamical models exhibit a

transition froa deterttnlaclc to stochasClc behaviour in response to a

changing external parameter. Models of phenouna as diverse as the

developsent of turbulence, Ruelle and Taken8 (1971), two-dlmenslonal

incompressible flow, FranceachlnL and Te_aldl (1979), and the evolution of

marginally unstable planetary raves, Pedloeky and Frensen (1980), demonstrate

the evoluClon of the flora via a series of period doublings co a chaotic or

aperiodic state. If the time evolution of the solution i8 regarded as the

trajectory of a point in an n-dimensional phase space whose coordinates

represent the amplitudes of a set of orthogonal functions used to represent

the solution, then the trajectories become erratic in the vicinity of a

region called a strange attractor.

Felgen_aua (1978), using a first-order difference equation, found that

there is a u_tversal relationship between the values of the external parameter

at which each period doubling occurs that named to be independent of the

detailed nature of the equation. Celiac and Eckman (1980) show how the

long-term evolution of a multi-dimensional 8yetma under certain conditions can

be governed by YeLgenbaum'8 relatLon.

a lonl-held belief among acmospherLc dynmLtCist8 is that an important

process 8tviq rise to the f/nlte-aJpl/tude propa|atLnj and stationary

planetary scale _ves at aid and ktfh lacitudu to baroclinLc instability o5

the maally-evere|ed westerlies. Indeed, steady azlsymetrtc or Hadley

solution8 to the Navier-Stokas equations whose aistence vLth _sk external

besting has been proven by Dutton sad r.toeden (1983) are believed to break
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down _r£th increased heating mainly by the process of baroclinlc £nstabillty

into the meandering assymatrlc flow patterns characteristic of mld and hlgh

letitudee, eedlosky (1970. 1972) _ae shown _nalyticaUy ,howincipient

marglnally unstable disturbances to a vertically sheared flow can evolve to

eiCher steady or oscillating waves depending upon the intensity o!

dissipation. An additional instability mechanism giving rise to

flnite-amplitude waves Is form-drag In_tabillty usociated with wavelike

topographic features aC the base of a barotropJc or barocllnlc atmosphere,

Charney and Devore (1979) and Charney and Srraus (1980). The instability

arises when the model atmosphere Is close to 8 state of resonance such thac _

the frequency of 8 free mode coincides ._th the frequency assoclaced wlth the
|

topographie forcing (usually zero). The resonant browch of Infinltezlmal

wavelike disturbances has previously been suggested as eke mechanisu for the

emtablishsmnt of blocking patterns, Lindzen and Tung (1979a, b). A unique

feature of the form-drag instability is that non-linear wave-mean flow

{interactions are able to lock the system in a quasi-resonant state Long after

the initial linear growth period chug facilitating the eventual equilibration

of the wave at m.plitudes substantially above the6e predicted from a purely ,_

linear theory, Plumb (1979, 1981). Charney and Straus (1980) suggest that low

index aquilibriua states in a truncated spectral model arise from the

nonlinmer ruonant growth of J_ IniClally linearly unstable mode in a

barocliuic nodal with topography. The energy source of the growing wave is

the available potential enerl_7 of Cha man sheared flow Just as for a

baroclin£celiy unstable disturbance.

It appears that topngraphy has _he potential for strongly aodifying the

long-corm behavior of an incipient unstable wave by allmrAng the atmosphere to

m m,,_aum n IN mm ! Um •
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resm.4n locked ic_ a quasi-resonant configuration. The purpose of this study ia [_
F

to _sess that potential _th 8 truncated, t_o-lay_r quasi-geostrophic mode_..

_nder the iapetu_ provided by the pioneerins effort of Lorenz (1960) on

the de_i_ of spectral models, a _rge number of studies have follo_d

providing valuable insigh[: into the non-linear dy_._cs of forced, dissipative

planetary-scale sotioos. Some of [:hemore recent studies are those _ Vickroy

and Outran (1977), Charuey mud Devote (1979), Charuey and Strauss (1980),

Nitchell and Du[:ton (1981), and 8ovili_ (1981). These models reveal a rich

variety of behavior arising free the non-linearities such as sultiple

stationary solutions, bifurcations from statiormry to periodic solutions,

amplitude vacillationS, and hysCeresis.

We shall initially account for nonlinear rave-lean flow interactions by l
{

neglecting wave-wsve interactions and by representing only the graves[: mode in i

the north-south direction and a single wave in the ernst-west direction. No i

restrictions o_ the wave Rsplitude will be imposed. This is to be contrasted
L

to the approach of Pedlosky (1970, 1972, 1980) and Plumb (1979. 1980) who

assumed a priori the nonlineari[:ies are wak and thus wave-wave interactions
_. .

are _gligible at least for the leading order solution. We s.all be
o I

particularly interested in uhether period-doublings can occur in response to

changing ex_.er_ql forcin s and whether they are predicted by [:he Fetgenbama

foniu].a.

In section 2, the mdel is developed and in section 3 the long-tern

evolution of s bs_oclintcally unstable disturbenee without toposrsphy in

considered. The effects of topography era eouidered in section &.

%

h ,

1986002282-024



23

2. Theory f.
A_

The doumln of interest _t11 be a mld-latltude _-plane channel of wldth

v/L where i is the north-south wavenumber of the grsvest suds. The wwe

auplltude wIXY. be constrained to atcaln a slnSXe uaxlauu st the mlddle of the
s

channel and to fall off to zero at the sides. Vertlcal structures of the

quxsi-seoetrophlc screen function _ and the vertlcal veloclty m v111 be
m

represented in the eve-layer model of Fig. I. The thickness of each layer Is

500 ub. The variables 9 and w are accounted for ac the levels shown. The

upper tx_undary condition where the pressure is zero is m = 0 for the vertical

motion associated :-tth the wave. The boundary condition at I000 ab It,

4. 4.

_o " - f_o Vs'Vhs (1) _

!:where we have assuMd that the 1000 mb surface deviates in height so little !
4. 4.

from r.he terrain that wo • ws - Vg.Vhs, where ha J.z the terrain height, i '

!The quasi-$eozcrophlc equations are, see Holton (1972),

v2, + vg • _ ¢v2, + f) . _o _ - dvz* ¢2) ,

+ vg • V + _ - d (3)
. o lap T

4. 4.

share $ is the INostrophlc stress functlon, i.e. V8 - k x V), f the Corlolls

psr_ter (f - fo + By), J ts the radiative tmatinS rate per unit mass (in

Joules k4"Is'l), _? the specific heat of air at constant pressure, sod o 8

constant stability pmrm_ter. Turbulent viscous dissipation of kinetic enarzy

'q_m_ ............
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_" has bee_ _ccounted [or _rtth a P_sylelgh friction ter_ In vorttcity equation

(2). The dtsblpative tits constant, d-1, was chosen to be 5 days. The flow

_ • viii be forced by _xternal radiative heating that Is linearly deFendent upon !

', the deviation of the zonally-averaged temperature from a specified radiative

_ equti!brua field.

1 A thermal dlb_tpatton tera has also been included In (3), It will be

• assumed to act only on t,_e wave-like part of the temperature pattern and zt's :

..
form Is the same as that of Rayletgh friction term.

The subscripts I and 3 will denote the levels shown in Fig, I at which

4
the stream functIo will be represented. The spectral expansions are

01, 3 --Ui,3go(y) + Ai,3gl(X, y) + Bi,3g2(x, y) (4) ,.

-" w - Wogo(y) + .ASl(x, y) . _Bg2(x, y) (5)

where _

So(Y) " Y i
St(x, y) -cosO, y) st.n(kx) (5)

__, szCx, y) -cos(re,y) coe(kx)

?.
; Tl_ts choice of functions differs from Chat of Charney and Serous (1980) -_

•- and In some ways ts simpler. They represent the zonally-averaged portion of

_ the stream function as a coe(_y). The choice of a linear field in y was made

|: to facilitate a sore representative thermal forcing field with cooltr_ in the i

northern portion of the channel and Waralng to the south. A slnusoldal

heatin_ field is _mrealisttc end since radiative forcing plays a crucial role

in the model It sakes sense co model It accurately. The above expansion also

s_clsfles the necessary lateral boundary conditions for the channel, namely:

, __ I I I - _"_ Him . _ III
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The geostrophlc flow vanishes aC y = ± v/2t and _ Sc(v_-n)dt = 0 for all z

where c Is 8 closed horlzonca. _ curve £ncludlng the walls ac y -t w/2t and
+

portions one co ust-tmsc wave apart connecting the walls, n is normal co c.

1"ne wave is constralned to have £_.e rldge and trough lines oriented
/

north-south and thus barocropic rave-mean flow interactions ere precluded.

for slmpliclty, the undulatlon of the lover boundary trllt be expressed as

gl(Z, Y), £.e., the height hs is

hs - hAgl(X , y)l(- Koo) (7)

Thus at I000 ab

3u2 S3hASo(y)+ _AU3gZ(x, X) (8) i
p

Use hu been made of the orthogonality of So, gl, and g2 over the reglon R

defined by 0 < z < 2w/k, - w/2_ < y < +w/?.t Also once chac _/

(9) %. 4
w6 w2 --

S/_So2(Y)d_y-_ /[_ [el2(= y) s2_'(x,y)} d_dy"T_" i
61_3 ' ' ' . !

t.
If the vortic£ty equac£on (3) is averaged over Che interval 0 _ z _ 2w/k, ve

find chat _JWo/ap - 0 it levels I sad 3. Thus the zonal amen vertical motion " i• !
q

field suit be equsl co 3kt2B3hAY/w2 at all levela and from coecinu£Cy the nan

e|eoscrophie mtrldton81 flow, _8S, rill be independent of y. The man flows

U1 end U3 can thus eh_e in response Co the Cor£olie corqus accinS o_ _q.

There are no la_olds stresses to accelerete the mash flow. "i

The apeecral equations are derived by subet£tutln8 Sqe. (l) and (2) tnto i
q,

(3) and (/J) mlrjLnil urns of (6), (7), isd (8), l _'q

I
up' ............................ ::-7,_,- .----_."' '_ ' ' ' •
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_
It Lo convenient to separate the stream function and mean wind fields _t

into vertically - averaged barotropic and sheared or baroclinic components.

Let

(uIu 3) - (u+AU, u-Au),

(AI A3) .,* (A +AA, A - AA), (I0)
and

(nI73) - (B +,_n, B - An), ,

The vortlcity Fal. (2) can then be rewritten _ :

•-_2_k = -ka:2(UB + AUAB) + kBB �dm:2A,(It)

J

•-_2t_A = -k_2(UAB + BAU) + Ir_AB + foWA/P �d_2AA,(12) _!

,, 7
1
?

.._2_ . lac2(UA + AUAA) - ir,BA + fokhA(U - AU)/2P + ck2B, (13) ,

--_2A_I - kx2(UAA + AAU) - k6AA + foWBIP - fokhA(U - AU)I2P + d_2AB, (14) _,,._._

• The therwody, naa£c Eq. (3) becomes , t

A0 = 3k,t2(BAA - AAB)/w 2 - 31rj,2oP(B - AB)hA/(2fow2 ) - &,/o/(2foCp) , (15) i1

AA - k(UAB - BAU) + ot_Al2f ° - dAA, (16) i

AB .. k(AAU - UAA) + OL_lll2f ° - dAB. (17)
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It ts the gas constant for alr, _2 _= k2 + JL2, J = J_y and ttv.m dertvcc/ves ire

denoted vtth • dot. Reference Co the vertical motion field can be su?pr_.ssed

by eItmlnstin_J _A and u B between (12), (14), (16). and (17). These f>u:-

eq_tlo_ can then be replaced by .

I

_(,c2 + ) 2)A._ = _k(,c2 + X2)U&8 _ k(,¢2 _ )2)BAU + d(,c2 + ,_21&A (18)
o

and
t

-(,c 2 + 3,2)AB = k(,c 2 + 3_2)UAA+ k(,c 2 - X2)AAU - fokhA(U - AU)I2P (L9) i

+ d(,c 2 + X2)AB .+.

b-ttere

_2fo2 _ I12
Jr

is 2wlLR. LR Is the Rossby radlus of deformation (about 4:150 Ira). _

It 18 convenient to non-<l:l.menslonaltze the ,mllU,atlons by rucallnll ,_.* _

dependent m_d Independent var/•bIee. Tablt I ehmm the varleblee and i
" I

f

corresponding scales, =here 0o •n_ Uo are arbitrary maplltudee, i
1

]

TABLIt I SCALING OF VAItL_LgS
e

V_L_LI SCALE
m

A, XA, B, &It, _o

U, &l/ IJo ,,

¢ l/(kUo)

l lm ,,
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' Ii& number of dimensionless parameters arise from chls process. They ere

t_ o

+

• d :

_ 0 "- k--'_"
_+ 0

g +

+,+ Uc -_ ---
_-+ ,c2U
%+ O

' fohA

+2 bo - 2p,c2q_° _

_ (21)

+ 2R1 :H2-_ bo(_')

r

ro -= _'_"0

_+ llZ" ac2'+ ).2

:_ Uc = Uc ,2 + _2 _

"_ 2

"] b_ _ bo F
,:, m2 +_2

r .m,...---III _ ..... .. + _ ..- ...... +-+'+-
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The zoually-sy_netri¢ heating ter_. in (15) w4_II be expressed u

_o12f o - r(AO - AUe), where AUe is an equtllbrlua emma wind shear which

through the thermal wind equation can be related to 8 =-ridiooal teaperature

gradient ATe .

With these definitions the follow£ng set of spectral equations results:

- (U - u)s + Arab - doA (22)

i * - (O - U)A - AUAA- bo(O - AU) - dos (23)

a_ - - nx(_n - nax) - n2(n - AS) - r(AU- aUe) (24)

t

AA = (U - IJc)an + RBAU- do&A (25)
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I
3. Topography - free model |

When hA is zero, Cha coefflclenCs bo, b_, and H2 in (22) co (26) are

zero. /L1though It is not tlledlately obvious, the resulting equaclons

• actually only have 4 degrees of freedom instead of 5. In the Appendix, Eqs.

(22) to (26) are wrlCCen explicitly in terns of the a_pllCude and phase of the

barocroplc and barocllnlc waves. Ic is then shown how one phase is arbitrary

and the re_slnlng 4 coefficients are Independent of iC as first shown by Baer !

(1970) Thls reducclon in degrees of freedom Is noc posslble wlch topography•

and _ have our first indication of the fundamentally different nature of the

topographic and non-topographic models.

One solution to the elm-independent equations without topography is

& = B - AA - AD = 0 and AU - &Ue. There is no wave present and the man _rLnd

shear assume the equillbrlum value. The vertlcally averaged man _rlnd U is

arbitrary. This _II be caUed the Hadley solutlon. Ic is approprlace co

examine Its stability co Inflniteslmal perturbatlons whose Ctm dependence is

of the form _pC. The problem reduces co the form

(_-.z) _ - o ,. _.
,2

* whe re ,'_

do U - Uc 0 AUe ,_B

,i

- Uc) - do - &Ue 0 - A

14 = 0 I_U - d U - U ItS ,(27)@ o c

- -.. 0 - (. - u*_) - do - u

_- .,As .,4. .,. -_,. -r]
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r
Ls the cotu_m matrix (A', B', AA', AB*, AU'), where the primes denote r

perturbations _rom the _Lsdley solution. For the present case A, B, AA, and AB

are zero in (27). There are five eisenfrequenciee of _, one of which is - r

by inspection. The other four occur as conjugate pairs with nesatlve real

parts for _2 > _2, i.e., for a disturbance _avelength shorter than the Rossby

radius of deformation. For larger wavelengths, the hadley solution can become

barocllnlcally unstable as evidenced by the fact that one pair of eigenvalue
I

crosses the /maginnr7 axis with non-zero speed froa negative to positive

le(w), A Hopf bifurcation has occurred, l_rsden and HcCracken (t976), as the
i:

steady Kadley solutlon loses its stabL11ty co a new periodic Eossby solution.

rot even longer wavelengths, the Hadtey solution can regain Ice stability as

the saw conjugate pair recrosses the iaaglnary axis. The waverumber at vhlch

these transitions occur depends upon the _luilibrium v_nd shear AUe but is
t

independent of the wan wind U. The transition beLween the Hadley and the
J

Rossby solution is shown in Fig. 2 as yen u the e-folding time in days i

,A

associated vLth the Instabillty of the Hadley solutions. The trane/tlon or !

_opf bifurcation curve is associated with an infinite s-folding tile. •

So fe_ vm have nosily reworked the Lwo-layer berocllnlc instability sodel " i
!

of Phillipa (1954). We shill now exa_ne the ,_,ture of the Rossby solution I

that evoZves as a result of the instability and aZso determine its stability

to infinitesimal disturbances. I

Assun the periodic solution consists ot s constant mplitude propesetinS

wave. The frequency is u, and AU is hm_d constant. Let
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FIG. 2 Stability L_alysis vithout toposraphy. Curves are labeled in
e-foldin E CLme (days).

I
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r:l ,
liE" '"'

lib A ,

o

then (22) to (26) becoae a set of coupled aleebratc equations. They are
,t

solved by first expresslnS A sad S in tetas of AA. h|. and AU ulin8 (22) and

(23). Define

o c i

cI = - (U - Uc +u)/D (29) ![

and

c 2 = do/D •

TheB

A " ClhU_& + c_UA| . "_ ,

(30) i
1

B - - c2&UAA+ cIAU61i . i

D

If (30) i4 substituted tnto (25) and (26). us flml

t
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_: 8ecsu_e of the special for_ of the coefflclenc _trix, non-trlvial solution

i_r AA and AB can exlsC only if all the elements are zero. If the definltlona

. of l, c I, and c 2 are used, then

: m + U - 0.5 U (2 2 + X2)/( 2 +)2) , (32)c

and
• 4

an2 . _ ( 2 +)`2)/()`2 _ 2) . (33)

Thus both the mean shear and tha Doppler-shlfted frequency of the periodic

solution are determined. The wave amplitude Is found from the thermodynamic

equation (24). Note from (30) that the saplltudes of the bsrocllnlc

: component, (A&2 + A_) 1/2, and barotropic component, (&2 + B2)I/2 are related

by

A2 + B2 - _U2 (gA 2 + _B2)/D (34)

The barocltnic wave amplitude squared is, using (24),

(au - Au)
AA2 + AB2 - r •

c2_IAU (35)
.#

Two conditions emrge for the existence of the periodic Ioasby solution:

1. X/_ > I such Chat AU is reel in (33)

11. O < AU < AUe such thaC 6A2 +A_ 2 is real in (35)

aseumln I AUa ie positive, i.e., cold air Co the

north in the radlaClve equilibrium state.

Condition I rucrlccs the usc-tmst wavelentch to hl steerer Chart the i_eaby

radius of deformation; hmmver it is not eufficienc tc insure chac the

1986002282-037



periodic 8olutlou exists,. For wavelen;tha a little longer than the radius of

defor_atlon _.0 is vary large, -ondltlon II Is vlolated, and the thermodynaalc

equatlon is _oc satlefled. The wave cJnnot transport heat _orthward fast

' enough Co counter rldtaCtve heating at low 18tltudes and cooling at high

laClcudes. Thus there Is both • dynuLtcel _onsCrainC, condltion i, and a
e

chermodynaalcal constraint, condlt_.on II, that must be satisfied for a steady

propagating _esby wave co exlsc. These points are 111uatratsd in FIg. 3 •

where AA2 + AS2 is sho_n as a function of horisoncal wavenumber by the solid t
t

linm. The rause of way•numbers over which the lossby solucior, exists

_: coincides exactly with the range over whlch the Radley solution is unstable.

: The wind shear, shown by the dashed llne, is less thln AUe for chase
z

wavelengths.
!

Fig. 4 shows the a_pltcude of the propagating nonlinear Itossby wave in

the unstable region. For a given equilibrium shear AUe, the sosc unstable
!

w_venumhar in Fig. 2 does noc achieve the maximum amplitude in Fig, 4. The i

longs.- wavelengths, typlcally, achieve larger amplitudes /n spice of the fact '_.

thgt their initial gro_h rates are not ms large as the shorter sore unstable ._..,:

_avelenZtha. This results from the fact that the longer _gvelenzChe do not

i - t
I reduce the u_ad shear, _U, as much below AUe as the shorter more unstable ,

_8ves, see Fig. 3. They thus have sore avallgble potential energy co tap and

eventually achieve • larger mtplitude. _l|s. $ sad 6 show rJumtim-evolution

of troy•number t tct_tlc energy and associated usn shut, AU, for m initially

small disturbance to the unstable _dley solution dhen AOe ,, 20 ma-l. In chic

sad 811 subsequent mmmric•l lntestatiucuJ the aljotltba of Lorenz (1963) usa

used. Large sad slowly damped o_clllationz in the •marS7 and shear occur u

they approach the proFqatin8 _nzsby maya aclutioa. The nzcillstio_s art 180" !

o. •
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out of phase with each othe as wace and =can flov interact via the wave heat

transport and associated mean merid__onal vertical motion field.

Our analysis of the topography - free model will be coapleted by

examining tb_ stability of the periodic Rossby solution to infinltesi_al

pe-Lurbations. This step is complicated by the fact that the coefficients of

the r_.sulting perturbation equations are time dependent. Let the subscript R

• be used t_ denote a variable associated with the Rossby solution. According

to (28), i

?

AR - AS sin t_._, +,_C cos (wt)

SR = - AS cos (_t) + Ac sin (wt) !
(36)

;

_ = 8As sin (wt) +_A c cos (wt) :
i '
I

_SR = _As cos (wt) + _Ac sin (_t) _ .

| ;-

Let SR be a column matrix represen=Ing the infinitesimal disturbance to

the Rossby wave. Then _ i

• " I

!

where M is given by (27) but with A, B, AA, and AB replaced by the right sides- I
I

of V-qs. (36). i

Consider the change in S over a period, T - 2w/_, associated with the

propagating Roesby wave. Floquet theory, Iooss and Joseph (1980), deals with

the linear stability of time periodic states and the object is to find the

complex Floquet multipliers Hi, i = 1, ..., n. For the present problem,
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n - 5. If the modulus of each Ht is less than unity, the basic state Is

stable. If at least one is greater than unity, It is unstable. Narsden and

HcCracken (1976) presented a s':uple numrtcal techn/que to find Mi• Integrate

, the equitation i - _ X, where X is n z n, ml.rically from an initial state

; given by the unity eatrlx over exactly one period•

The etgenvalues of the resuItlng monodrouy satrix A are the emltipliers.

Earsden and KcCracken (1976) show that one sultiplter WIU always be + 1 and "

] thus the stability is found from the modull of the relmlning four• This i

technique Is particularly attractive since- it can be applied to periodic [

solutions which are deterained analytically or numerlcaUy. When topography

is Included in the model, we shall flnd that slaple analytical periodic

solutions are no longer available.f •
The periodic Rossby wave solution was stable under all conditions. In

fact, the Floquet multipliers are all independent of U the _ean zonal wind

I speed. Rnssby waves have been shown to be unstable under certain conditions

i either due to a Pmyleigh type of instability of the man flow, Lorenz (1972), _
t ;
, or to resonant interactions between the disturbance and the Inssby wave in the i

J weak interaction liait, Gill (1974) and Clark (1978) Both of these
i • I

o

[ _chanisms are precluded from this study.

" i
f
q

t

1

4
i
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4. Effect of Topography

IQ Chls section we shall investigate how topography _fects the steady

solutions, their stabllity, and the long-term evolution of initially

baroclinlcally unstable a4sturbances.

A solid lower boundary can exert two kinds of drag on the atmosphere.

One is a frictional drag due to tangential stress at the boundary. The second

• is a form drag or normal stress due to pressure differences across undulatlons
!

in the lower boundary. In this model the former stress does not occur since {
1

internal v_ecosity is not a11owed for while the latter can occur wlth

topography. Consider the form drag exerted on the fluid in the x-direction

averaged over a wavelength: fps(_hs/Zx)dx, where Ps is the surface pressure, i
j_

When this is integrated by parts it becomes proportional co fhsvgdx. If Eqs.

(4), (7), and (I0) are used, the integral can be evalua:ed and it is clear

that we can interpret the term H2(B - _B) in Eq. (24) as the tendency of the

_ora drab to change the mean shear. As we shall see, the topography permlts :_

new _lme independent equilibria aside from Hadley soIution of the previous !

section. We can now _ve solutions consisting of stationary finlte-amplitude

waves and associated mean zonal flows. A new form of instability of Chess

" equilibria called form-drag instability by Charney and Scraus (1980),

hereafter referred to as ca, can occur. The instability results if an _ -

. increase (decrease) of mean shear, AU, from an equilibrium is aseocleted trith

8 decrease (increase) in the form-drag leading Co an Jmplifying disturbance.

CS _rs also able to demonstrate that form-drag inscablllty is closely

related to s resonant state bein 8 approximated where the mean flow

configuration is such Chat a Rossby wave d£sturbance Co a Hadley circulation
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is close to being stationary. Growth of the wave ensues as long as Its |/
!l

uavelength Ls the same as that of the topography.

An appropriate question here is whether these two views of form-drag or

topographic instability are mutual).y exclusive or is a comprehensive
#

undp.rstandlng of the phenooenon to be gained oe.ly by considering both

mechanisms. C$ do not clarify thls point.

Fig. 7 showa the solution to Eqs. (22) to (26) obtained by setting all

time derivatives equal to zero. A single equation in AU Is formed which Is i

solved numerically. U and 6Ue are set equal to 20 ms-l. not certain values

for the horizontal wavelength of the topography and the aSsociated stationary

rave, multiple sofutlo_ss are possible. The Hadley solution shown by the t,

horizontal llne has 6U - 20 ms-I and, of course, Is independent of wavelength.
i

It is stable for wavelengths smaller than the P.oseby radius of deformation i

(_R) and becomes baroclinlcally unstable for wavelengths larger than about ,

5500 ks. A Hopf bifurcation, Karsden and HcCracken (1976), occurs at the

critical wavelength as a pair of eigenvalues of the stability matrix crosses

the imaginary axis. An analytical form for the periodic solution could noc

be found and thus all inferences about its behavior ware obtained from

numerical solutions.

AC ultra-long wavelengths corresponding to zonal wavenumbers I to 3 and

short wavelengths for wavenumber 7 or greater, a pair of stationary Rossby

solutions appears. The h/gh index solution (v/th relatively snail wave

amplitude) is unstable (except at _try Ill _velenstha where tt exchanges

instability rich the Hadley solution) and the low index solution is stable.

The instability of the high index sod@ is evidenced by a single ei|onvalue of

the stability matrix having a positive real part. The mplLfying disturbance

I[

_ [ -.'ll 'wl_/_ IP"' ' _-_'
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!

is thus 8tatlonar7 and the growth is related to the form-drag associated with I"

the topography, _'

t The dashed lines In Flg. 7 indicate the shear, 6U, for which a resonant -
l

!

, response to topographic forcing would occur, tn the absence of dlsslpstlon

and If AUe -AU, the tlme-lndependent solutlon to Eqs. (22) to (26) Is
't
! B -6B - 0 (the topography varies as sln(kx)) and A, &A, and 4" are determined
i

! from

()()
I U - Uc 4Uo A

i . (u - . (38)
|

-I P_U U - U 4A b
4 • c

,t

An unbounded response to the topography occurs when 4U attains that value for }
which the deteructnant is zero: !

4u-4u-± [(u- uc) (u-u)IR]Z/2- 4uR (39)

A flnite-amplttuc_e stationary wave is excited by the topography for 4Ue _ 4UR

provided the Ran flow in the lower l•yer, U -AO, is nonzero. The dashed

lines tn Fig. 7 show the resonant shear and both the high and low index modes
1

are associated wlth shears that are close to resonance, i

The tin-Independent solutions to the model depend strongly on the

radiative forcing. Flg. 8 shows the Hadley, low Ind•x, and hlgh index modes

• s functions of AUe when O - 20 ms-1. A Hadley solution strictly exists on17

' when the wave amplitudes are zero. This can occur when 4U - AUe " U - 20 m-I

since the zonal flow in the lover Ls_,er will be zero. The _bel Hadley will

i still apply to those solutions for vhLch AU ~ AUe even though 8 weak wave is.i

._ excited by the topography. The model can catsstr_phicsUy transform from •

%

/
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FIG. 8 Stead_ topo_caphLr: solutions. Solid line -wavenuaber 3, dashed
llne - v_,venuaber 8.

• " . '-Y_ I _P

1986002282-049



4

48

Hadley configuatlon to a low index or blocking configuration for small changes

in _Ue for both the short and long wavelengths• Furthermore the blocking

pattern can be highly stable to further changes in bUe irrespective of their

direction.
s

Fig. 9 illustrates the nature of the instability of the high index flow

at vavenumber 3• The cende_:cy of AU ts plotted against _U by solving gq. (24)

assu_tng A, B, _A, and 4B are zero in (22), (23), (25), and (26) respectively•

Barocllnlc Instability of the Hadley solution is thus suppressed• The low

index solution is sets-stable. Only very large positive departures of &U

beyond the value for the high index equilibrium can amplify with time. The

high index equZlibrium is clearly unstable with positive (negative) departures

I

in shear tending to approach the Hadley (low index) equilibrium. The i

variation of the form-drag, -H2(B -AB), with AU is illustrated by the dashed

line. ,_taxi_um westward drags are achieved at shears close to resonant values !

of gq. (39) shown by the heavy arrows. The resonant shear must lie to the

right of the low index equilibrium to render it unstable _ince positive

(negative) departures of _U decrease (increase) the eastward drag• The high

index mode is stable by similar reasoning•

The proximity of a resonant configuration to an equilibrium is thus

necessary but not sufficient for It becoming unstable. Note however that the

coincidence of an equilibrium with resonance would not render it unstable.

The growth of a quasl-resonant disturbance to a finite-amplitude wave

equilibrium is only guaranteed if the resonant shear is to the right of the

critical shear in Fig. 9.

This relationship is further illustrated in Fig. |0 where the wave

amplitude is shown as a function of the equiltbrlul shear, 6Ue, for wavenumber

I
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FZG. 9 Shtsr tendency (AU) and _oru-d:q, both dtnenelonle_8, for
uavenuaber 2. hUe - 20 us"l. AUI indicates reeonant: shea_'.1
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3. Without dissipation an unbounded amplitude appears u the resonant shear

._UR given by Eq. (39) Is approached. With dissipation, u shorn by the solid

lines, three equilibria are possible for _Ue > AUg. The low index and high

index shears AU (not shown) for wavsnumbar 3 are so either side of the

• resonant shear. The presence of dissipation 18 this indispensable to _ultiple

eq_Lllbrla in the steady state model.

The primary purpose o_ this section is to study the effects of topography

on the baroclinically unstable disturbances to the Hadley equilibrium in Fig.

7. The results of a stability analFsls of the Hadley equl]Ibriua are shown in

Fig. II. The dashed lines are the shear, _U, of the Hadley solution which ts

8mmller than AUe vlth topography (without topography they are equal). If chls

figure is compared b-Lib Ylg. 2, It Is seen that the topography stabilizes the t

Hadley solution for mall AUe, where&s for large AUe the e-folding tines are _ !

roughly equal for vavenumber8 3 _o 5 but are increased for _avenumbers I and _

2. The -lira-long waves are stabilized _rlth large rad£ative forcing because

the topography reduces the shear vla the form-drag and thus the store of

ienergy for the rave co feed uses.

& series of numerical integrations have been carried out to deteraine the

. lons-teru evolution of uJvenuuber 5 unstable disturbances (the topography has "
i

the same vav_nuaber), auma vlth forcing, AUe, Just above the onset of

lnmtability (a ]..title less than 13 m "l) evolve into singly-periodic

solutloma. The period (about $ days) can be anticipated from the Imaglnary _

part of the pair of eigenvaluee that cross the iusinary axle at the Hopf

bifurcation. Fla. 12 shore the rave kinetic energy and shear from day 50 to

150 for AUe - U = 20 us "1. They oscillate 180 ° out of phase vith each other.

The solution coma/eta of a eastward propasatinql finite-amplitude cave uhose
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01- 2 ) 4 S K,. 6 7R
WAVENUIilEN

Fla. 11 Stability au13'ois v_Lth topo|raph 7. Cur.'es are labelled ILa
e-foldLall tim (days). 9uhod 1isis ahoy shear, AO, for AOe - 20p
30, and &Ous-l.
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alplitude modulates a_ ir comes into and out of phase with the topography, _i

Ill

_ The period of the modulation is thus the same as the wave period. The

barocltnic conversion of zonal available potential energy also influences the

wave mplitude but both ef._ects (barocllnicity and topography) are in phase.

Wig. 13 shows the barocllnlc, topographic, and radiative generation of zonal

available energy as well as the shear (proportional to the zonal mean

temperature gradient) over _ period. Both the barocllnlc and topographic

energy sources lead the shear by about 90".

When the forcing exceeds 23.53 U "l, a doubly periodic solution appears,

see Fig. 14, with the fundamental period of $ days still present but with a

harmonic with perlcd I0 days appearing. The mdulated finlte-aaplitude wave

still propagates eastward with a period of about 5 days and thus the form drag i
I.

oscillates at the fundamental frequency. The barocllnlc and topographic
I

ecergy co_vp-rstons are still in phase, see Fig. 15, but the bsroclinic i.

conversion has the fundamental as well as the first harmonic. An increase of

the forcing beyond 24.36 ms -I induces an additional subharmonlc of the

fundamental with a 20-day period. A 40-day period appears beyond 24.54 ms-I

and the solution becomes aperiodic when AUe exceeds 24.6 me-l. These findings _

are sumurized ia Flg. 18. " i

A Floquet stability analysis of the singly or doubly periodic solution in

the vicinity of the points where the new har_onlcs first appear can help

deteralne the values of _Ue at the points _nd also verify chat indeed s

subharmonlc bifurcation has occurrmd, i.e., that the singly periodic solution

has exchanged stabillty w_th • doubly petlodle one. Let Ei be the Flouquet

exponent related to the multiplier _i by the formula

Mi = egt T , (40) ,

a
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Iooss and Joseph (1980). If a solution of period 2T appears at the

bifurcation point then Ei - 2wl/2T and chum Mi = - I. A subharmonlc

bifurcation occurs at that value of AUe for whlch the modulus of this

multlpller is unity. This can be used as a means of finding the precise

location of a bifurcation point. Visual inspection of the solutions yields

only very rough estimates of the critical forcing AUe. One of the _Itlpllers

- of the _ooodromy matrix w111 still be + I. It is possible, but unlikely, chat
q

two of the multlpllers could simultaneously cross through - I at the

bifurcation point but this _ould almost certainly yield a new solution whose

period is not an integral lultlple of the fundamental. This behavior is not

often observed in geophyslcal modets.

An interesting side benefit of the Floquet analysis is that it permltted i

the period of the fundamental or doubly periodic solution to be precisely

determined as the forcing changed. It is only when the numerical integration _ i

to deteralne the monodromy matrlx is carried over an exact period that one of i
|

the Hi - + I. Both periods increased slightly wlth increased forcing. For I

Instance the funda_ntal period increased from 4.% days to 5.03 days from

AUe - 13 to 23.53 _-1. , -

" A sequence of subharmonic bifurcations leading to a chaotic or aperiodic " !

solution for a berocllnically unstable initial mean flow has been found. In

. this modal the presence of s sinusotdally varying solid lover boundary was

necessary to stimulate the multi-periodic solutions. Only constant amplitude

eaves evolve in the topolraphy-frea model. The copnsraphy is not always

necessary however, for multi-periodic solutions. Pedlosky and Fanzen (1980)

developed an asymptotic two-layer nonlinear model for marginally i

barocltnically unstable waves vtthout topographic forcin|. In response to

1986002282-061



60

varying dlsslp•tlon, harmonics of the fundamental frequency can evolve Just as

in this model.

The intriguing aspect of this study is that the values of the forcing,

AUe. at which the subharmonic bifurcations occur closely follow the hypothesis

of Yelgenbaua (1978), namely, if &Us, n is the nth blfurc•tlon value,

AU - AU
£ - e_n e,n+l for n large. (41)

n AUe,n+l " &U , n+2

l

Pedlosky (1981) did not obtain s_ch close agreement.

YeAgenbaum considered one-dimensional smooth s-,pptngs of a closed

interval upon itself _rlCh a single maximum. It seems _nreasonable Co expect

chat the hypothesis should work £o_ • multl-dlmena_tonal differential system

lik• ours and yet it does.

An appropriate question _rAth a severely truncate,4 model llke this one is

how sensitive the results are co the degree of trunca_:lon. Is the sequence of

period doublings in response co changing external forcing merely a feature ::
J

unique Co low order models? All the runs t_th initially baroclinicaUy ,. !

unstable disturbances were repeated, but with two additional modes in the i
- {

north-south direction in addition to th• gravest rood•, i.e., coe(_y), !

co•(2_y), and cos(31y) _odes _re included. On@wavenumber in the x-dlrectlon I
4.

was oaly represented. A similar sequence of blfurc•tlons of the perlodlc

solutions _mre obt•insd leading Co aperiodic beh•vlor beyond • critical

forcin|. IPelgenbaua's formula was reasonably satisfied again.

An Interestlng phenomenon occurs as AUe is Increased will beyond the

value for the oasec of aperiodic flow. A re|ion of doubly-perio_ic flow ]

appears /_ the chaotic region, see Ft|. (16). Possibly • reversed bifurcation i
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,procesJ has occurred, Lorenz (1980). A similar phenomenon was found by
_p

Pedlosky and Frenzen (1980).

!

!
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DISCUSSION

Topography has affected the stea_7 solutions, their stability, and the

long-terl evolution of baroclinically unstable waves in a fundamental way. It

has provided r_ additional degree of freedom to the model that has enabled

, multi-periodic and aperiodic solutions exist. Calculations with smailer but

finite amp)itudes for the topography reveal a similar sequence of subharmonic

bifurcations with increasing radiative forcing. And yet, with no topography

this behavior is entirely absent. Is the transition from the singly-periodic

non-topographic behavior to the multi-periodic, bifurcating behavior gradual

. or sudden? Both the non-topographic az_d topographic models exhibit singular
?,

behavior at the value of forcing for which the Rossby and Hadley solutions

exist. Part of the problem with the topography-free model is that the !

behavior of the Rossby solution near the singularity is not properly described f

J

because of too few external parameters. Shirer and Wells (1982) outline a

": technique to add terms to the polynomial in &U describing the steady state to

fully unfold the singularity by expressing it in the most general form. Their

procedure can identify what parameters should be added to the non-topographlc

model and indeed determine whether topography properly unfolds the . [

singularity. Once that procedure has been completed, a proper evaluation of i

the role of topography can be made. Suffice it to say now that the

topography-free iodel does not appear to be a generic one.

Another geophysical system has been found where temporal behavior evolves

via a urles of sub-harmonlc bifurcations to an sperlodlc state, in this case,

under the influence of increasing zonally-symmtric heating. The preliminary

indications are that this behavILr is not altered by the degree of truncation

W ............... : ", .I__._" : ..... "_
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of the present spectral model. Equally intriguing ts the fact Chat the

_r
prediction of Felgenbaum (1978) for the positions of the bifurcatlon _ints is-

apparently verified for a be_ocllnlc _odel of arbitrary dimension. The fact

chit his foraula is derived from a one-dlmensional sapping of a closed

interval upon itself suggests that the 1ong-ter_ behavior of _ny geophysical

models tends to becom one or two di_ensional. Collet and Ecksann (|980)

• suggest how the tlsa evolution of Iul_1-dlmenslonal systeas in the vlcinicy of

periodic solutions can _e reduced in dLlension by constructing a sequence of

Polncare saps onto hyperplanes of dimension n - I in n-disansional spaces.

A frustrating aspect of chls study was the apparent inacessibllty of

analytic so1_Cions for the propagacing mulcl-periodic soluclons with

topography In spite of the simplicity of the spectral equations. The

Lyapunov-Sch_tdc _thod, loose and Jomeph (1980), could yield useful _ i

inforsaclon about the singly-perlodlc molutlon near the bifurcation point aC |]

which the Hadley solution becomes barocllnically unstable In Fig. 7. It viii
give the initial terms in a regular perturbation expansion of the solution _

!about this point.

t,
. !

i

!

-
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; APP_N1)IX li

The purpose of this section is to show thaC Che 5-coefficient system

without topography reduces Co a 4-coefficient system. Introduce the amplitude

and phase o£ the berocropic wave, IAJ and # respectively, and the same for the

baroclinic wave, IBI and a, such that

A - I*I cos + s - IAIsin,

(Ax)
A. - Inl _.. Am- IBIsln = • _,

"_ Eq (22) sad (23) can be trans_oramd co

!

•_ IAI- AuInl .i.(_ - ,) - dolA[ - bo(U - AU)Sin _ (A2) ;
I

. - (u - u) - [Aulalco.(_- ,) - bo(U- aU)cos,IIIAI (A3)

i
• similarly (25) :ha (26) becomes i

161o _, IAI.xo(, - .) - doIIt + bo(U- ,,) .Xo_ (A4) '_
m

; - - (u - u_) - [_ul,lcos(=-,) - boCU-aU)cos=l/Iml • (,5) " •

-i
If the topographic cerml are dropped and the phases !

o

Odla-$
(A6)

• eels+ #
"I

1
ere tnr.roduced (A2) co (A6) beco_
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I_I- AuInl ,i_ % - do}Al . <AT>

*" 161" - _U iAI,i_ %- aolBl . (AS)

snd

.. (U c - Uc) + AU - I co8 8 d . (AI0)

: The set £, completed vlth the thermodynamic equation (24)-f

_u --_llalisl sln ed r(aU- _Ue) , (All)

whet, the f_rm-drag h4n been omltted.

" The equations have an appeal.frill I£_iplIclty vb.en expre8_ _d In Ch£s fore. ,_

The Important feacur, £8 that JAJ, JsJ, ed, and AU ,volv, Independently of 8 s

and thus (Ag) c,n be 18noted tendering a 4-coefflc£ent system. As soon as ?

topogrs_._.y is _ntroduced, these _ coeff_LcIenCs are no lonller Independent of

, Ollo

1

2-

i , _ a_l i, ii i _ _, -- ' ' |'-'| ' ' |' '| J

_._ _......... _ _ __ _. -------_ ..... _. ....... .'_..'_'" _ . --.
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1. Introduction

During th= past thirty years several laboratory experiments on

thermally-forced rotating liquids have been performed. They used a rotating

annulus, Ride (1953, 1958) or rotating dishpan, Fultz (1953, 1959), with an

imposed radial temperature gradient. Even though the sphericity of the earth

could not be accounted for, many properties similar to those of the real

atmosphere were observed. These experiments produced a symmetrlc single-

celled _ridional circulation pattern both for small and large radial

temperature gradients, known as the lower and upper sy_metrlc Hadley regimes,

respectively. For intermediate temperature gradients, a wave-like asymmetric i

circulation appeared in both experiments, and, especially for the rotating

f

annulus, a simple pattern with one or two waves was present. Furthermore, the _

wavenumber decreased as the radial temperature gradient increased. However, in
I

the rotating dishpan, as distinct from the rotating annulus, a more i
l
!

complicated changing wave structure resembling the atmospheric circulation was t

!

observed. !

Lorenz (1962) presented a detailed theoretical inve_tigation of the

rotating dishpan experiment. The liquid was thermally-forced with an

externally imposed radial temperature gradient on the lower surface. He used _

a two layer model with a modified form of the quasi-geostrophic approximation.

A highly truncated series expansion in terms of Fourier-_ssel functions for

the dependent variables was used, and both the Hadley _nd Rossby regimes

showed _emarkable similarities to those observed experimentally, especiaUy

Hide's rotating annulus.

One serious llaltatlon of the laboratory experilnts is that they did not

slmulate the spherical geometry of the urth. This study will exaalne the

question of the existence and the properties of the Hadley and Ro_:_y regimes i;
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for a spherical atmosphere. Lorenz's modified geostrophic model (1960) is

used which is the same as the quaslgeostrophic model but with the

additional effects of a time varying static stability and thermal

advection by the divergent wind. The model consists of two spherical layers

around the earth and the flow is thermally driven by radiative heating. A

• Newtonian approximation expresses the heating as the difference between the

actual temperature and a specified equilibrium temperature. The dependent

variables are expanded in a truncated series of spherical harmonics that

retains enough terms to allow a detailed analysis of the properties of the i

Hadley and Rossby regimes. The main topics of interest are the

basic properties of the transitions between the Hadley and Rossby regimes, and _ !

the transitions between wavenumbers within the Rossby regime. We shall _
t;

emphasize the distinct features Introduced by the sphericity and shall

contrast our findlngs with those of Lorenz (1960) for the rotating dishpan. 4 !

In Section 2 a detailed description of the model will be given.
!

Following this, in Section 3, the properties of the steady Hadley regime and

its stability both to axisymmetric and wave perturbations will be studied. In i i

Section 4 the equations for the steady Rossby regime are first solved

analytically when one wave is present. Then after showing that only one

. steady wave can exist, linear perturbation theory is used to determine the

transition conditions between wavenumbers within the steady Rossby regime.

Finally, the structure of the steady Hadley and Rossby regimes for various
e

rotation rates is obtained.

1986002282-073



I

72

!

2. Description of the Model

Since we are Interested In the fundamental properties of the i

Hadley and Rossby regimes which are sensitive to thermal advectlon by

the divergent wind and variations in the static stability, the modified

geostrophic model of Lorenz (1960) is used.

Thermal forcing is parameterized with a Newtovlan heating approxlamtton.

A slmple linear turbulent friction representation will be employed where

the drag at the interface separating the two layers is proportional to

their veloclty difference, and the drag due to the solid surface below is

_" proportional to the velocity of the lower layer. A diagram of this model

is shown In Fig. 1 where p = 500 rob. The stream function for the

nondlvergent wind has the ',alue _ + T In the upper layer and _ - z in the _

: lower layer. The potential temperature In the upper and lower layers t_ J
f

0 + a and 0 - o, respectively. The fifth independent variable is the

velocity potential which has a value -X In the upper layer and X in the !
!

lower layer to satisfy the conditions that _ = 0 at the pressure levels 0

and 9_,

The barocllnic and barotroplc vortlcity equatlons are

" I

"v2v " J(* V2¥) J(t V2_) k2 v2* + k2 V2_ 6 _3x (1) t

a__ V2z = . j(_,V2z) . j(T,V2_) + V.fV X _ (k2+2kl)V2 __t (2)

"' + k2V2_ - B
/i
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e+e,

// e-o" _\

/ \ -

0 p p p 0

l"Figure I &rrangeunt of Iayers and discrete data surfaces for the model. ,-

Refer to text for the explanation of the symbols. I _

" i
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i
df and k! and 2k 2 are the coefficients of frletlon between the., where t_ " _ _:

• upper and lower laver and between the lnw_r layer and the underlying surface,

, respective!y. The Jacobian operator J has the property that

• _f __ _f
a(f'g)'a_ay a_ ay "

+

The two there_dynaedc energy equatlofls are

• ae oV2x gl(e.e, ) :_' --= - J($,e) - J('r,o) + - (3)

z

_ 9_ i
.. _-_-= - J($,o) - J(T,e) + vx.ve - gl (°"°_) (4) ,

I

where 0* and o* represent equilibrium temperature fields and gl Is the i

' Newtonlan heating coefficient. ",

The system of equations Is completed with the linear balance equation

; fq2T + I_ _ o g3 v2e (5) " t

t

ehe re
.i

' C (1/2)':

g3" p [(3/2) u:- (Z/Z)':]2

1
,!

and
J

j. t
, it

C _

P

1986002282-076



q

75

The five independent variables are all expanded in a truncated series of
F

spherical harmonics. The model is chosen to be weakly nonlinear in the sense r

that all wave-wave interactions will be neglected but wave-mean flow

interactions are accounted for,

t The spectral expansions are

4

0 0 0 0 n n eln_ -n -in_= _IPI + _3P3 + _n+l Pn+l + _n+l P=I • ,
a

--2 = T1 P1 + T3 n+l n+l • + T 1 P 1 • ,
a ._

c

2 = x2 P2 Xn n • + P , (6) . ,"
J

!

in_ -In_ {
0 Po0+ 0 P20 on pn o-n p-n= 00 0 2 + • + •n n n n P

1'0 0
o = o0 Po

__.

-4

d I

and 1
t

O* 0
o* = 00 Po '

•

vhere a is the earth's radius.
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Properties of Legendre polynouLtals are reviewed in the Appendix, !i
The complex spectral coefficients must satisfy the relation

t

_n_ = (-1) _n+l' 8 - (-1 n '

which is necessary for _ and O to be real vsrlebles.

q |

The stream function is chosen to be antisylnetric across the equator to

yield a symBerrlc nondlvergent velocity field, The potential temperature and

divergent velocity component are chosen to be sysmetric across the equator.

The meridlonal structure for the wave is chosen to be the _de with the

: largest growth rate, i.e., the gravest mode.
t

" If th_ above expansions are used, then (I) to (5) become:

N

d_ 0 0 !
- C1 d"_- " k2 CI_[ - k2 CITI (7)

i
i

A

d_; 0 0
F+

- C3"d'_ "= k2 C3 _3 - k2 C3_3 (8)

It

dVn+l' 0 .n, n, 0
- Cn+l = i(Cn+zcz)*+l '1 un+z,n+z,1

"_ p

n, nm 0

+ i(Cn+l-C3)_n �Œ�03 Ln .3

,i

_It, n, 0
+ i(CIt+l_Cl)X: 1.0 L+l.n+l.1

,It+l, 3

n - k2 ,rn n+ k2 Cn+l On+l Cn+l n+l - 12fin On+1 (9)
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dzO 0 0 0 0 (10)

- CI _ = -6f/f,2X2 + (k2+2kl) CI_l - k2Cl#/I I.
[J

o -0 0 0 (ii)
- C3 _'dt" - 16R¢3X2 + (k2+2kl) c3T - k._C3_3

dTr_
lq T O Tn_ ri_ 0

n+l = £(Cn+l- Cl)#/n+l i _n+1,n+i,l- Cn+l d-'_'_

n 0 Ln, n, 0
+ l((;n l_3 n+l,n+l,3

n O_n, n, 0
+ l(Cn+l-Cl)_n+l _JLn+l,n+l,l

• n O_a, U_ 0
+ I(Cn+l-C3)_n+l_3Ln ���„�n+lD3 ;_

i

i'l _ ,

- a_.(_+z)c_,z xn + (ka+2kz)Cn+zT_+Z 4' :

4. •
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d8 n

.! n t 0 on LO,n,n _ t _ On LO'n'n:_ d"_-" O1 n T,n,n n 3,n,n

!
_ 0

•_ n 00 .n,n,O °O n
- i ¥n+l 2 Ln+l,n,2 -L C kn (15)

f

*I

i dog n _n,O,-n._ --n on i--n,O,n
i d-t"-'= - Xn 0"11 - Xn /Cnn In,Om_ /Cn n nm O.n

0 0 .0,0,0 ) (16) ]- ,2,o.JC2-
r_

, 0 0 + 8_ 0 T_ = 393 0 (17)=i 30 ¢2 TI c3 -"_e2

! ,1
a g3Cn 8n (18)

• 2fln(n+2)Tn+l " 2 n• i
o

! where

(n 2_ s2) t12¢I _

n (4_- I)

• i

C - w_(n+l)n

r

" end fl is the earth's angular velocity. The factoro L_B and lcryB are

inCerac¢ion coefficients and chert properties ar_ tevie_d in the 4pp4ndix.

Since for each 8_ven zonal wavenumber :hero Is only one mrtdional node, the

ridge sad trough 8zee triXZ be psrallel to usridtans of lon|/tude thus preven¢-

ins mridto_l "ransport of uoatntuu and mJppressluE tmrotroptc wave man flov

interactions. Si,_larly. the _routh mad ridge mms ot the tmtpersturo wave %
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[

The solutlon is ob_alned by setting all the spectral coefflclents !i.

as_G:lated _th wave disturbances and ell the _erns Involvlng tlue derivatives

equal to zero _n (7) to (18). The resultlnS 8 tmnllnear equations can be

reduced to one equatlon in e0,

0_ 0_
gl + 3V__E o0

(0_)3 + _0 g102 - 0 (21) --

where

2
12 kl g3

, .- kl_Z[los(,_)2^ +J.zs(,_)2]^ ,E

; Da2)

!

and i-

t

F-

gl - g2

Note that O_ must be negative If the equllibrtue teeqmrature Is higher in the

tropics than In the polar regions. . i

Once 0: Is known, the o_her seven variables de_inlng the steady Hadley

0 X0regtae can be found. The equations for o , CO, and 2 are

e

0o°g" gl (221

i

0•0
I

e0 (23) :e0
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-_ and

2

0 72 k I 33 ,_'
_, X2 " (24)"

Da 2

0
. Any real rooc of (21) must satisfy e 2 < 0 implying that the temperature

0* 0

decreases poleward. Equation (21) also requires that 82 < 82 < 0 implying

implylng that the merldlonal temperature gradient is less than the

*
" equilibrium meridional temperature gradient. This is physically reasonable

since the external forcing continuously strives to increase the observed

temperature gradient against the affect of a poleward heat transport which

reduces the atmosphere's merldional temperature gradient. Also, (22)

0* i

0 > a0 > 0 Implylng that the Hadley cell circulation is iindicates that a0 r

0* t
always statically stable since o0 is always positive. : !

The structure of the _ridional circulation can be seen in the sign _ i

0 0 _,_,_ be negative and since the divergent wind isof k2. From (24), "'2

• _2_

proportional to _ and the vertical velocity is proportional to --T i

_Y 1a direct nmrldlonal circulation is implied.

The atream functions have the form L

o o i
• 0 0 108 _ ¢2klg3_2

• l "Tt " (25) " I
Da 2 ',

0 0 ,_
" 0 0 48 R ¢3klg302

_3 = x3 = Da2 (26) 1

and therefore the zonal velocity in the lower layer must vanish.

J

i I
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Figs. 2,3, and _ illustrate t_e ?otenttal temperature and wind field ¢

_i structure of the steady Hadley circulation for ty?Ical atmospheric conditions. |;
1

The time constants for both Newtonlan heating and dissipation were chose, to

O* O* O*
i be 10 days. Typical values of 80 , o0 and 82 for the observed winter

circulation o£ the northern heaLsphere are

O* O* O*

80 = 435.6, o 0 - 22.6, 3nd 62 = - 25.0 .
o

A direct circulation is evident with warm tropical alr rising and cold nolar i
I

alr sinking. The merldionai divergent wind is 9oleward In the upper layer and

equatorward in the lower layer. The zonal velocity In the upper layer is zero

at the equator and pole and reachec a =¢xt=um at 55"N. The variables v 2 and !

_2 are not shown but they can be readily obtained noting that v 2 = - viand i

_2 = Wl" i

b. Stablllty of the Steady Hadley Regime

We shall now examine the stability of our analytical Hadley solution. The J

system of 8 equations, i.e., (7), (8), (10), (11), (13), (14_, (16), and (17),

representing the axisyffetric part of the flow can be reduced to a system i_ _,
t

0
of 7 prognostic equations by eliaLnating X2 using (17). When the steady !

1 1
i

Hadley solution is used as a basic state, these 7 equations determine the

stability of the Kadley circulation to axlsyumetrlc disturbances. Over a

wide range of values for 8_ slx stable elgenvalues are obtained. Tl_ere is

always one neutral or zero elgenvalue indicating that there is an unknown

parameter and associated process which has been Incorrectly omitted from the

model. We plan to deal wlth thls problem In a future study.

, =_, ,_rq_,- --'_ _, -.... •
in
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• Figure 2 Vlpper layer zonal, velocity profile for the steady Hadley reglae0
for e 2 = - 25 w "I.
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The stability analysis of the steady Hadley regime is completed by [_
!

considering both the axisymmetrfc perturbations discussed above and wave-like v

perturbations. The s_ability matLix can be partitioned into separate

axisymmetric and wave submatrlces. Therefore, the stability of the steady

Hadley regime to wave perturbations can be deteroL1ned independently from that

of the axlsymmetric perturbations.

The wave stability analysis can be reduced to the followlng equation

82 n lj[
"n Bl,n ,n Sn+l (27) _"

:4"I . B3 B4 On ,
1'I. m['1 _rl n :

where
5
¢

n, 0 0 {
Sl,n " [l(Cn+l"Cl)_ L:;1,n+l,1 + l(Cn+l-C3)$ 1, 1,3 i

(28) i-

_ p

+ k2 On+I - i2_n] ( ) ,

%,,," [i(c+l_cl)O _, ,,, f" l(cn+:c3),_ i,,,, ,,, 0Ln+l,n+l,I + n+l,n+l,3
(29) "_"--"

k2 Cn+I ] (Cn+

* I
0 1

°O Cn 0 T.n, n, 0 + I(Cn+I..C3)_O_n, n, 0 i= _ [1(Cn+I-C1)__ -n+l,n+l,I Ln+l,n+l,3
S3,n (' 4_n

(30)

"k2%+IJ+i_°:' ..o_,. °Qo%%+I_.>-Io+_._._'"-_ ,_ _ i

I

'" . U : o

_p

"1986002282-088
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0 C 13 n, n, 0
ii4, n = (aO n n [i(Cn+l..Cl)q_O Ln+l,n+l,1

4_ Yn

0 n, n, 0 (31)
. + i(Cn+I- C3) _3Ln+l,n+l,3

LO,n,n
+ (k2 + 2kl) Cn+1 - 12fin]+ i_ l,n,n

0

°O Cn Cn+l _n,)-I

" + i_ L3,n /2_n

where

g3 Cn 1

a 2_n (n+2)en+I a
8

and |

i •

_n -2an (n+2)¢ +1 i-

_ Solutions of the fo_m "_

n . yn e_t On = on e_t
¥n+I n+l,0 and n n,O

can be found, where _ = "r + iui, if

2 + , + (B1 B4 _ 82 S3. n) = 0 (32)" - (Bl.n B_.n) .n .n .n

I
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The findings of the Hadley regime stability analysis appear in Figs. 5 |_'

and 6. For a dlsturbance of given _sst-west wavenuaber,

i. instability obtained for a range of equillbrlua temperature

04,
gradients, 02 , bounded above and below, i.e., the Hadley re-'me

0 t

is stable for small and large 02 , see Fig. 5,

il. maximum e-folding times on the order of a day are achieved for a_.i

O*
intermediate

0 2 , and .

ill. the growing dlsturbance tends to propagate westward for the smelt I

O*
02 , ( or small equilibrl,_,-, vertical shear) and eastward for large
00"
2 ' see Fig. 6.

For coaparison, the stability analysis of the trad_tional Phillip's two-layer,

quasi-geostrophic 8-plane model appears in Fig. 7. The stabilization
|

0* i
accoapanylng large 02 or vertical shear is clearly related to the I

high static stability produced in the Hadley circulation. Northward advectlon ,' ;

of warm air in the upper, layer and southward advection of cold air in the !

lower layer by the divergent component of the flow wilt eventually suppress ._

the baroc_Inlc instability mJsoclated frith the vertlcal shear.

roB.

J
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6. Steady Rozsby Regime

p. Propertles of the ithaca_ _ _._

In the previous sect:on the Hadley circulation and its stability were

studied. A wave-like disturbance can grow and at the sa_ time alter the

axlsymmetrc part of the flow. It is expected that eventually a new type of

steady regime will be attained characterized by unlfc.-_cly propagating waves of

constant aaplit_de and a tlle independent axlsysmetric flov.

We trill fi:st look at the steady Rozsby circulation with Just one wave

present. Consideration of more than one wave coexisting at the same tiae will

be postponed until later.

The steady Rossby circulation is determined by setting the tire

derivatives of the axisymmettic ter_ in (6) to (17) equal to zero. The

axlsymmtric coefficients _iO, _30, zlO 0 0 0, T3 , T2 , Bn_ 80 , are each i
!

specified by the same equatlo1,s am for the steady Radley teglse, st

Ne_t a procedure will _ developed to express the tmv¢ part of the flow,
I

n 0 0

i.e., _n+l'n Tn ���$�ann'and Xn, in terss of e2 and o 0. We will later derive two
0 0

nonlln_ar equations in the two unknowns In 0 2 and o0, whose solution will

completely specify the steady Rossby circulation. By the ea_ technique used

to study the stability of the Hadley circulation, (9), (12), (15), and

(18) e.an be colblned into the two equatiems:

d n

_n+l 0 n 0 *- |l,n(O2)en+l + S2,n(e )e: . (33)

and

-- - - .m W_m
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d6 n
n 0 0 n O 0 ,_ (34)

_---_- - B3,u(O2,Oo),n+ l + B_ (e2,Oo)Ui11 I1

SLnce these are linear, they have the general solution

n n Plt P2 t
• - . + • (35)• n+l Vn_i,. " *n+I,B

and

Ult _2t
0 • On On
n n,A • + n,B • (36)

•rhe re

(_,/)

I /(PI,u + ,n-B2,nB3,n_1 " _ (Bl,n + B4,n + S4,n )2 " 4(B1._4

(38)

u2 " _"(_!.n + "4,n " (,/_Sl,.+.S_,,n)2 - 4(Sl,n,4,n-,2,aa3.ri

I

and j

m . 1

On,A S2, n *n+l,A (39) ;

p "B
a -1_ It

On,D = S2, n *n+l,9 " (40)

The Lttte_ equatLon= bpectfy _h- phase relsttonshlps between the _00 ab stream

funcc,,ou and teuperature patterns.

] 986002282-095
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|i
It was shown

earller that Re(U2) < 0 and, therefore, the wave solutlon _I_

corresponding to _ will decay to zero for large tlme. Therefore, for large -
2

time, only the first expression on the right side of (35) and (36) need

be retained. The requireMnt that the study _ossby waves have constant

amplitude Implies that
I

-'_(_i)= o . (41) ..
@

/With

L

U1 -Bit nq _ , (42) "
B2,n

_q. (14) can be vritten ,'

.n . n,O,-n n -n L-n,O0n
tq* ¥u+l Ou_l 4-Un+l,2,n *u+l *n+l u+l,2,n w

t
i

0 _
°O O*

-_42" c2 X20- gl(flO, e2 ) = o (43) ':_
_,.4

_here q'_ denotes the complex conjugate of q. Using the properties * i
I
t!,

LntOm -n _ T.'_,O, n

n+l,2,n " -n+l, 2,n

and

11Q

_]. - (-1) *u+l '

it follows that

1986002282-096
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0

)n+l = 2 Ln+l,2,n Im{q} /2" Ii

The wave amplitude Is thus deters/ned. Its phase, however, Is arbitrary.

The characteristic equation for _ Is also (32) and Is of the general form
1

Ax2 + (B + _.t)x + (c + FI) - 0 (45)

where A,B,C,E,F are all real and A.B are positive. If we follow the samet

procedure as Lorenz (1962), we flnd that (45) has one root with a zero
%

real part if i• ;

A_2 - B(BC+ EF) = 0 . (46) _;

Matching corresponding terms In (45) wlth (32) requires =i
!

]2 i

[Im(Bl,nB4,n-B2,nB3,n) i

- Re(Bl,n+ B4,n)[Re(Bl,n + B4,n)Re(Bl,nB4,n-B2,nB3,n) (47) .!{

+Im(Bl,n+ B4,n)Im(Bl,nB4,n-B2,nB3,n )] - 0 ! _

0 0 %,
. Another equation involving e 2 and o0 can be derived by solving for {)

Xn in (15) and substituting into (16). If the properties _!

n • _
• -n = (_l)n e-n = (_1)n en*

0n+l tn+l ' n n ' ,

InmOm'n m I -nmO,n ],
Re(u 1) = O , n,O,n n,O,n
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are used, it can be shown chat

in,0,-n

/_.._ nrOrn 0 n 2 _n,n,O

,i

0 .0,0,0._ + (o 0 - o0 ) = 0 • (48)
':: + X20 82 J'2'O'2/u2 gl

4

0
and o_ nugericallyEqs• (47) and (48) vere solved for 62 ,

after

_; which the wave part of the solution and the phase velocity were found.

Fig. 8 shows the phase velocity of the finite aIplltude steady Rossby

I n 12<0implying that the calculated:_ solution• OutslJe the region shown, _n+l

solutions of (47) and (48} are not solutions to the entire systel. Since

these equations are nonlinear, there exists the possibility of other solutions

which are far away froI the initial guee_ Iade in the nuIerical iterative

technique• We could not £ind any such solutions and it is assumed that ours

are the only acceptable ones• One significant point is tl_It the boundary in

Fig. 8 exactly Imtches the boundary for the stability of the steady Hadley _;

regiie deIonstrating that whenever the Hadley regiIe is unstable to a

perturbation of a given wavenuabar, a steady Rossby _ttculatton will exist _

that wavenusbar• If Figs. 6 and 8 are colpared, we find iiIllar values of
I

phase velocity for large n, whereas there are two differences for sIaller

wavenuIberl• First, both the IaxiIUlWestward and eastward speeds are sig-

nificantly larger in Fig• 8 and second, the stationary finite aaplitude wave
i
! with IerO phase speed occuri at a larger equllibriui teIperature gradient
i

than for the infintnslIal growing wave•

1
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I

Throughout this section only the situation with one wave present at a l_|.

ti_e was consldered. If two waves with wavenumbo..rs a and n coexist, both _,

propagating with constant ampl_tude, (41) must apply for both wavenumbers

0 0 n 2
separately. After calculating 62 and o0, it was found that either JSn+ll

I is positive and [ m 2 O*Sm+l[ negative or vice versa for all values of 6 2 when the •

the steady Hadley circulation is unstable. Furthermore since (41) would have

to apply for each wave, there would be more equations than unknowns and no

0 0
solution for 02 and o 0 could be obtained. Therefore, our steady Rossby

¢ rculation can exist only when one wave is present. 1

b. Stability of the Steady Rossby Regime

Consider now the stability of the steady ltossby circulation. The steady !

Rossby drculation for a given wavenumber will be initially perturbed with a
!

]

i wavelike disturbance of another vavenuaber. As in the previous stability

t
i analysis of the steady Hadley regime, the perturbation equations can be
I i

separated into axisy_etric and wave parts. Since all waves are independent

I of each nt';:er, the same equations for the stability analysis of the steady .

! Hadley circulation are retained except for the fact that the axisy_etric

] terms are for the steady Rosaby circulation .c a given wavenumber. The _
1 t

i axisyltric perturbation equations yielded six stable eigenvalues and one " II
: neutral eLgenvalue as was found earlier. The wave perturbation equations are

]

J

d •

] _ " Bl,.(O ) $1ro-1 + B2,m(e )0 (49)

J
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h

._ and

,t

_ d 0 m. m 0 0 m 0 O m
dt " B3,m (B2'°O)_m+l + B4,m(O2'°o)Om (50)

0 0

where m is the wavenumber of the perturbation and 02 and o0 are the values for

• a steady Rossby circulation of wavenumber n.

When the wavenumber of the perturbation is the same as that of the

. steady Rossby circulation, the stability analysis becomes much more

complicated because the stability equations have time dependent coefficients,

, In thls situation the stability was determined by integrating in time the

complete system of spectral equations from a state far from equilibrium and

seeing if it converged to the steady Rossby circulation. These integrations

indicated that the steady Rossby circulation is stable to a perturb_tlon of

the same wavenumber if it is also stable to perturbations at all other

wevenumbers. 0 _ !
These results are suumarized in Fig. 9. The abscissa is 02 end the

ordinate n. The solid line indicates where the wayenumber n steady Rossby I

!circulation is stable to perturbations of all other wavenumbars and the dashed

line where It is unstable to at least one other wavenumber. The steady

• gossby circulation allows the presence of only one wave at a time, -;

O*

and as ]e 2 I increases the wavenumber observed decreases from six to two.

Also, It can be seen that the transition from one wave to another occurs
u

abruptly, and that for all transitions including that between the lower

and upper symmetric Hadley regIR there exists no hysteresis effect, i.e.,

the solution for the steady Rossby circulation does not depend on whether or

not e_ was increasing or decreasing as the transition occurred.
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We •leo found an excellent correspondence between the wavenumber of the

stable observed wave of the steady Rossby clrcul•tlon and _hat of the most _}
!

unstable wave of the steady Hadley clrculation. Thls correspondence holds for

O*

all values of 82 except very near the transition boundary betwecn wavenumbers

2 and 3, i.e., the wavenumber predicted for the steady Rossby regime is not

• the most unstable wave for the Hadley solution t,, thls narrow region.

However, in general the wave that Is iLL_ti•lly mOSt unstable w111 also

eventually be the wave that Is observed in the steady Rossby reglw.

The time scales for Newtonl•n heating and dissipation also play an {

important rote in the Rossby clrcul•tlon. It was found that for heating and

dlsslp•tlon time scales of 50 days or greater, a dlsturbance to the steady !

Rossby solution would evolve into a vaclllating or periodic state. This t

clrcul•tlon is doubly periodic char•cterlzed by •n mplltude vaclllation whose

period is roughly 2.5 ti_s that assocl•ted with the wave propagation. The

energetlca of this vacillatlon consisted of zonal available potential to eddy

av•llable potential to eddy kinetic energy conversions followed by the reverse

cycle w_th the period of the aaplltude vacillatlon.

So far, the rotation rate of the earth, £, has been kept constant;

however, _ is varied in many laboratory experi_nts. It would be Interesclug

to vary the rotation rate and then coapare results with those for the f-plane.

Flg. 10 shows both the steady Hadley and Roe•by regl_s as a function of the

0*

rotation rate. £, and 02 . The boundary between the steady Hadley reglw

and the steady Rossby resi_ is shown by the dark curve. This boundary is

quite slstlar in shape to that obtained by Lorenz (1962) for the rotating

dishpan experi_nt indicating that sphericity plays • secondary role. For

O*
fixed values of 02 , the stable wavenuaber observed In the steady Rossby

regime increases with _. Also, as in Lorenz (1962), the steady Rossby reglae
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does not exist for wavenumber one. This is most likely a result of our choice

of elgenfunctions. All the transitions between wavenumbers still occur

r.abruptly for all values of a tested.

5. Conclusions

- We have found that fo_ all imposed merldlonal temperature gradients a

steady Hadley circulation exists in our two layer spherical wodel. The

stability of _his circulation to axisyumetric and wave perturbations was then

exaalned. The axisyuaetric perturbations always had one neutral eigenvalue

but never grew. The Hadley regime for intermediate values of the mridlonal

temperature gradient, was berocllnically unetale to wavelike disturbances,

whereas for higher and lower meridlonal temperature gradients it remained

stable. We thus have confirmed the existence of an upper and lower syumetric

Hadley regime on the sphere.

I
The steady Roseby circulation for the sphere yam shown to have two d

significant dlfferences with that found by Lorenz (1962) for the rotating

dishpan. Lorenz found a hyster6eis effect between the steady Roeeby r_gime

and the upper symtric Hadley regim. Our epherlcal model showed that the i

transition between the steady Roseby regim and the upper syametrlc Hadley _,

regime occurs at the sam wridional temperature gradient irrespective ofthe

direction of change. Also, Lorenz found that transitions between wavenumbers

in the Rossby regim do not take place suddenly but rather there exists a ,_

• !
ragion in between where two waves can exist together. In our model these

transitions always occurred abruptly.

For vary essll values of heatin8 and dissipation it was shown that the

_ceady Roseby resile was unstable and evolved tnto a tim varying circulation.

This new flow was doubly periodic with a lonEer period mmplitude vacillation

and a shorter period associated with the propasation of the wave.

v
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A comparison was made between the most unstable wavenumber of the steady

Hadley regime and the wavenumber that is ultimately seen in the steady Rossby

regime for the same value of the equilibrium mertdlonal temperature gr_'

The correspondence was very good and showed that almost always whiche_ r wave

bad the largest Initial growth rate would he the steady wave that is

eventually observed.
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Appendix

Properties of the t_sociated Legendre Polynomials and Interaction Coefficients-

The norullzed associated Legendre polynomial can be defined .q=

m

pUS [(2n+I) (nl)tt I12 (l-u2) _ dn+u
n 2 "_-_'_" 2nn! d n+a (_2-1)n (A-l) " ,i

'i
j ,
, where., = 81n0. and _ is the latltude. The 8pherical harmonic can then be i
i

-l! defined as . pUSeimX where • is the zonal wavenunber and Jn.a o is *he ;
q

I nuaber of zeros along • _eridian of longitude. It will be si=.pler to [ollow z
i :

the notation of Platzsan (1962) by defining a complex wave vector "f - n44m. "
! t

Some of its properties are
i

, e2V2Ty - - n(n+l)Yy (A-2)

' Y_ co8$d_d% - 2v6c_ (A-3) " i

., and _ _ af
v_lere 3 t8 the Kronecker deles, and • denote8 complex conugete.

a_

The _wo interaction coefficients are

J

i l/2 4r a dPfj ]
L'a / -,/=
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f" _/2 mclmBPoPB dP dPl3

+_._+ ,:o.+,+/"/_ ,,.,,t-C,+;_,,+ ,,+1oo.+,,,+ (,-,_

f The Interaction coefficients follow several selection rules stt_arized In

i Herilees (i968). Lay s = 0 if any of the following conditions are not
, satisfied.

i

+ m + m8 "' m

,ino- npl, < ny < n(, + n_

n +n +n =odd
a B a

tat&

l - 0 if any of the following conditions are not satisfied:_yP

+mS " mm(l y
G,

!n -.,St < n _ n +n sY a

; i

n + n_ + n - even

- i
; na + n B # 0

I I ,,s __ _ , = , , s,
T
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1. Introduction tr

A fundamental characteristic of atmospheric so,Sons on all scales is that

_ the exchange of energy between various wavelengths is accomplished via

nonlinear interactions. Accordingly, it is essential that mathematical models

of atmospheric motion retain this uonllnear behs-lor as completely as
i

_{ possible. Thls is difficult owing to the fact that, In general, mathematical

models are cecessarily flnlte-dlmenslonal, while the governing systema (such

as the Navier-Stokes equations) are infinite-dimensional. As a result, the
_j

use of model_ that are based on syste_ of ordinary (Lifferentlal equations i

forces the modeler to truncate both implicitly and explicitly. Thus, the
t

parameterization of certain variables is a necessary feature of all models. _,

For example, this is an important step in the development of global forecast

models of the index cycle, in which only certain scales of motion are

emphasized.

In view of the requirement for parameterization in numerical models of

all _ypes, it is necessary to ensure chat these operations are accomplished

with maxiamm efficiency regarding the techniques employed and the scales of

the motions that are parameterized. It is reasonable to assume that the

structure of the solutions co the derived systems themselves should provide a "i

basis ,_r developing parameterization methods that tmuld preserve sore

ac_ .rarely the nonlinear properties of these dynamical systems. In

particular, we refer to the topological structure of solutions as a means of

describing them In terms of their critical parameter values, branching

behavior a_d stability. We propose that a knowledge of the topological

structure o_ the solutions to a dynamical system is essential for developing

an efficient parameterizatioa techn£que, and, that this technique will provide

lnst_h_ Into ways of properly truncating all mathematt:al models of ._!

]986002282-] ]2
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atmospheric flow. Horeover, becauRe even low-order models contain ter_s that
E

are analogous to Chose that appear in the original partial differential n_

equations, it is likely that a successful treat:ent of these :odels vlll be

relevant in a general sense.

For the purposes of demonstrating thl8 paraaeterlzatlon technique
@

convenleutly, we use the qussileostrophlc equation because it has the

advantage of belng easily represented in spectral form (e.g., Vtckroy and

" Dutcon (1979), Charnay and DeVote (1979), Wain-Nielsen (1979)). Thus, u a

prototype, ve consider a truncated spectral model based on the forced,
i

dissipative quast-geoetrophic equation developed by Dutton (1976a) for flay In

a channel. The channel Is centered at _Ltddle Lstitutdes, has rigid lateral !

boundaries and is cyclic in the zonal d_recCion. The scream function ¥(x,t) !o

is represented by a Fourier expansion, gevtontan heating is used to model the

thermal forcing, and a d_rect dissipation mechanism t4 *splayed v_a an eddy

viscosity coefficient.

The use of severely truncated spectral models has made it possible to !

study various properties of atmospheric flow by, mong others, Lorenz (1960,

1963), Vickroy and Dutton (1979), Charn_y and OeVore (1979), Wtln-Nielsen i _

(1979), and later by Lorenz (1980), ShLrer (1980), _tLtchell and Dutton (1981) i

• and Shlrer and Wells (1983). A 8tSnificant advantage of working vith severely
f
i

truncated spectral models :1.8 that many of their properties may be studied
J

analytically, In partie.ular, steady solutions are made easily tractable in

models of thls type. The occurrence of uultlple steady solutions _n a forced,

dissipative system is a manifestation of the fact that, upon eltminatlu_ the

temporal derivatives of the spectral components, we can express the model as a i
i

system of nonlinear algebraic equations. Those eqwsttou often can be +

expressed as a polyuc_al of odd degree In terms of only • sinEle component. ,"

i

+,.-*N + .... + ++..,,,-,+,r
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The steady solutions to the model represent balances between the rates of F

forcing and dissipation, and they are obtained by solving this polynomial for

Its reel roots. New solutions to the dynauLtcal system tend to be born in

pairs, and this is reflected by the fact that the real roots of the polynomial

occur in odd nuabers. The stabilities of the solutions are of interest;

physically, stable solutions are states that might be observable. Points in

phase space at which two or more steady solutions meet, known as steady ':

bifurcation points, indicate transitions in the flow from one regime to
5

: another as the magnitudes of certain external forcing parameters are varied.

'4 It has been shown by ShLrer and T,;ells (1982) that these transitions may be ,

_. smooth or sudden depending on the general form of the solution surface, and on }

_' vhtch forcing parameter is varied. The loss of stability of a steady state at

the bifurcation point Is a crucial factor in deters/ntng which of the

avaLlable flow regimes might represent observable solutions to the system.

In sore recent work, Shirer and Wells (1983) point out that the topological

form of the solution surface depends, in general, on a polynouial of lower

order than the complete one, further demonetratin$ the relevance of results !._

obtained from the study of severely truncated models. In addition, Dutton and !. '-,

-4

Walls (1984) have examined the attractors of sluLtlar hydrodynuuLcal flows and -l

have found that the dimensions of the spaces in which these solutions reside " [_.',

t

p.
are Likely r.o be finite:

:.', Rowever, it is clear that the truncatloa process ¢i.|o results in the " i
i

oalssion of energy exchanges between the scales In the model and the ones
I

_ii outs£de the ¢runca_ed set. ,'his Is particularly significant for large-scale
_i flow, owing ¢o the /Japorcance of the transfer of mtrophy from the miler

!
] waves to the ultralonl waves and to the sonal flow. Thus, wa seek an ,t

I
objective method for representing the affects of these interactions in whZch

k_
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we reduce, or at least maintain, the length of the original truncation. If we

parameterize those interactions involving components outside the truncated

set, then the nonlinearity inherent in a large model with mny components may

be represented accurately in • smaller model involving fewer nonlinear

equations, This can be accomplished by expressing the omitted ccmponencs as

" functions of those retained in the truncated set of the smaller model. The
}

parameterized components appear in the truncated set as a result of the

structure of the nonlinear and linear terns in the model, *_Ich derive from
!

analogous forms in the original set of partial dlfferenti•l eq_tions. In a i

p•rameterized model, those components that orlginite outside the truncated set

• re expressed as polynomials involving the retained components. The _ i

coefficients of these polynoeut•Is •re referred to here as paraleterization

functions and they portray the effects of Interactions between the retained

and paraaeterized components of the flow. In an operational setting, the

values of these p•rameterization functions would be computed using observed. 1

l
data. In the present study, _ _rLll Cest this scheme by creating data sets

obtained from the solutions to a larger spectral model.
_4

In thls article, _ •re concerned _r_th p•r•materlzing steady behavior,

and, wlth preserving the informatlon it reveals about the transitions +_-_I

exhibited by hydrodymimical flows. The davelop_nt of this scheme _*

• I
. presented In a way that facilitates Its application to spectral models of all

_' sizes, However. it should also be noted that the concept of utilizing dat•

4
sets u • device for parsaetsrizacion uy be applied to numrical models of

all types.
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2. Spectral _del of quasi-geostrophl¢ flow

We consider the forced, dissipative quasi--geostrophlc equation discussed

by Vickroy and Dutton (1979)

ehlch contains the standard quadratic, linear and Inhouogeneous forms found in

all eodels. Here, J is the Jacoblan operator, _ Is a diemnsionless stream

function, and w_ use the B-plane approximation f = fo + BY. A direct dis-

81patlon mechanism is employed that 18 proportional to uVH4T, in whlch u is

a dimensionless eddy viscosity coefficient. Theoretical supporting arguments

for uaing an eddy .viscosity in models of large-scale flow are presented in

Dutton (1982). The tnhomogeneous term H in (2.1) represents soma simple

I forcing and derives from an approximate form of ttle thermodyuaaic equation

(e.g. Decree, 1976b) that is applicable to quasi-KeostropNc motion. Here, we

t

i interpret H as a form of thermal forcing. However, other interpretations

I exist such as those of Euer (1978, 1979) and Charney and DeVote (1979) who

:i derive analogous terms to represent topographical forcing.

i To apply (2.1) to floe in a channel b'Ith a maxinua westerly current •

located at the middle latitude, we select the domain
G

t,

-cx, 0_<,_<2,;

Appropriate boundary cond_tioM on Y are .1) periodicity in the zonal direction,

|
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2) the meridional velocity component v vani,_[_es,C the nor1_ern and southern
l'

boundaries of the channel, and 3) the Phi.\lips (i_34) constraint, which I:

prohlblc8 the development o_ a ciL'culaton around Ct'_ebsundarles.

Because 42.1) contains the aozt_ont, 1 I_aplacian _f the act,am function.

we solve _H2_ = - _u'Y Co dec_i_t t4L_ ei_mnvalueo _n ,and the el_enfunctions

o

, _n which we use _o write

N

" v(x,c)- _ An(t)_n(.X) • (2.2)n-I

-_" "_ (2.2) into (2.1) _ :_]s To obtain the spectral rQpruentatlon of (2.1), _e .u_c..._.,.te

and then _ultiply each term by its conjugate _n" Because t_e elgenfuncClons

are orthogonal, we can integrate ow_r the entire spatial domain x for each

n-l,2,...,N to produce the Fourier transformation

N N N _.

_'n " - _ _ n_AkAm + _ ! Cq Ar- V_'n An + Hn ' 42.3)k=l ,e'l r I .

in which Dp and Cq are ln_eraction coefficients which we define in the. . "_.

Appendix. ,'he ei_envalues ere Xn = t2 + n2, in which t and n ere the -

" _ i
horizontal wave numbers in the zonal and ssridional directions respectively. _

• ! !
. To obtain • simple spectral model with a naximum in the westerly velocity i

component u(y) that is located at the center of the channel, and thac

interacts nonlinearly with the disturbance components, we choose the five-

component expansion

• _'

!
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_(x.:) - A (t)si,(y) + X2(t)cos(kx)co.(y) + A (t)sln(kx)co.(y) [" 1 3

(2.4)

+ A4(t)eos(kx)eos(3y) + As(t)sin(kx)cos(3y) .

1
1

Because we are Interested primarily in the steady solutions a to the model,
i

i we define A(C) = a+u(t), and set a(c) = 0. Wlth thl8 condition and w£th

(2.4) to represent the stress funcclon _(x,t), we obtaln from (2.3) the five-

couponent steady spectral syuCea

-Dan +Dan -Va =h
134 125 II l

-Dan -Dan +Be -Va -h
213 315 23 22 2 '

D a a + D a a - 8 a - V a - h (2.5) ,
212 314 32 33 3 ' '

- aa -Dan +Be -Va =h | ?_13 515 45 44 4

J

Dee È�|�-Be-Va -h , _
412 514 54 55 5

in which Dn, Vn, _n and ha are defined in the Appendix. The psrauterlsaclon
,0

ceehnXque dmveloped in the sequel trill be applied to subsets of (2.5).
Q

IC can be shorn algebraically ChaC the deterLtnanC of the ImfC elde of

(2.5) does not vanish. Thus. ususttng e I is known, we can use Cramr's
,4

lule co solve the last four equaclons in (2.5), whXch ere Linear in a2,,,,a 5. _

SubstlCutln8 these solutions into the first equstion in (2.5), us obtaln

a ninth-degree poiynoe_al in el of the form

Pgal 9 PSal $F(al) " + + "'" " 0 . (2.6)

,q
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I

whose real roots •re the steady solutions to the spectral equations (2.5)°

Because (2.6) is of odd degree and the coeffclents Pn •re real, complex roots

must occur in conjugate pairs and the exlste_ce of at least one real root Is

guaranteed.

Owing to different _lances _tween the rates of forcing and dlssip•tion,

(2.6) 6"111 often have several real solut£ons. Thus, the stabillties of these

solutions •re of interest. The fact that • stable solution relate_ physically

Q

to an observable state is discussed Lor=_lly in _Ltnorsky (1962), while other

dlscusstons on the relevance of bifurcation and stability to hydrodyna_Lcal : __

systems say _ found in Shlrer and Dutton (1979) end Vickroy and Outton _

(1979). In general, the stability of • stationery _int • say _ exa_ned

by _nearizing the system •bout that _int and then computing the eigsnvalues _

of _he linesrized problem, which has solutions of the form _(t) -_exp[_t]..

Thus, • stationary bolution an 18 steb'_ to a small perturbatl¢_ _n(t)

provided that Pat(y)<O for every elsenvelue y. The point 8c which 8tsbillcy

changes and a _w steady solution bifurcates from the first is, in general,

given _ _(y)=O. For real elgenvalues, the critical _Inc _ given

slmply y-O for some x. Bifurcations thac indlcace the appearance of •

temporally _rlodlc solution are known _ Hopf bifurcations and these occur

" when _m(y}-O, _(y) , O. _lthoush in the present study we _nslder _mly

preservation _ the steady state structure of the solutions co the _rser

model, _eerly the paraMcsrisatlon technique _d,ll _ed to _ extended

sufficiently so that the stability of the solutlous U preserved u well.

Th£s _ 8 coplc of future research.

I
III w - r -- i
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3. Development of the para_eterlzaCloa schem li

Analogous to (2.3), the steady Ipectrel model (2.5) ¢_n be _riCten in the

general tom

o

,q N N

[ [ D %, X s , + v, -h -0, n-l,...,, (3.l)
k-1 I-I p r-I q r n n nm m

• /

However, if we irish to reduce the .libtr of tquel:loni In (3.1) to some number i

L<N, then tr, a retatned ai-equi:ioa li lose the conr,ribution of the r,erui r

rL } _
TL " + + Dpike n - y. B_ t r , (3.2)

k_l w'L+I Pl k-L+l k,a-L+l r-L+l

where, for slnpllclty, _ have chosen r,o omit the Last L+I,...,N equa=ions

81r,houih any L-component eubeec my be used. To retein In the ipecr,ral model
_d

tatforiition eonceruinll Tt , li piramiterite its terms In the reliiniall L "
#

equer,lons. If _m denote the omitted spectzel components by au end the retained ,_. i

8pecr,rsl components by al , Chin Cho parssmteriser,ioa of (3.2) is achieved by i

represent,tall the coefficienCe in chit eppeilr in the oo.limer cerlll of the " !I

reillinln8 eqnations m functtone of the coefftciear,s at. We viii mimi chef, . ]
l

the Ileairel tots of the rellr,ioaihip bocmn c_ pirimceriled end fir,lined

components _s lliven by r.be lai_inlCe serlel

Ljt'l t I 1 ill'l I p'l _,
I

i
I

i

:
_ i m ,, _ n

1986002282-120



-, 119

• in which the quantities F are parameterizatlon functions that must be

• _ determined from a data set. In this study, ;m let the values of F depend on

the moments of the spectra1 components which result from particular choices
A

for the rates of forcing, rotation and dissipation. Thus the F contaJ _

'_ information concerning the interactions between the retained components a t.
and the param@terlzed components _. It will be shorn in Section 4 th,lt

suitable teralnatlon level for (3.3) the|e_ectin_ a depends pri_rlly on

• . characteristics of the data set.

To determine how the values of Y are obtained, we consider in the
O

follovin_ example a Ltnear approxlm#tton of the para_eterlzed spectral

components; in this case (3.3) becomes eluply

L

in" rnO+ F_r a . (3.4) :.n[ t
t=l

ii In Section 4 _ shov that the .s. of a nonlinear approximation of (3.3)

proceeds analosously. Usinl (3.t) so that the components an are approxia-scad ._

by _ , we require that the values of F are those for which the pac_-
n

mterisation of (3.2) satisfies the relation

" L

" [CY.o �Zrni"t) " an]2" Zn , n- 1,...,'- . ¢3.5)
tol

Ib

Here, E and ca denote the expected value and 8Lnimm mean square error

respectively, v_Lch apply over an ensemble of responses that depend oa the

"1986002282-'12"1
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,t
L

forcing race h_. The parameterization functions Fn0 and Fn£ that satisfy ,
tr

(3.5) are giwn by

L

' _n " Fn0 + _ FnLa"gn'-I

• (3.6)

L

- ;N
1 Fnl ' "" "

!
p

:i which i_ a Linear, Inho_ogeneous set of equations In F provided that the } i

;I barre_ quantities are _: _n. Here the tildes have been dropped and I denotes !,

_ the Ioaent of _. Therefore, the quantities ann k and 8_a k represent the _.
i

"_ correlaclon coefflclents between the spectral coaponents. Obviously, a _.

nonlinear approLtmtion of (3.3) sr_ll yield _tgher-order moments in addition
x

to those appearing In (3.6). In Section 3a, tm dlscus8 a procedure for ).

obtaining the necessary data from (2.5). i

--'I SubstlCutI_,g the linear _pprox_utlon (3.4) Into the spectral model (3.1) ?

i end adJustlng the subscrlp_.s, _e obtaln the parameterlzed steady spectral _.,
i

1 model i

L L L N L -

(3.7)

L N N ... N

" q'r "k'1 a"L+l k,m-L+l

I-I,...,L

-- II I I I • II • •
i v , .-_ _

] 986002282-] 22
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Z in which the terms after h in (3.7) include the effects of the parameterized

spectral components. Bect,use (3.4) is a linear approximation, (3,7) contains

:_ no terms of higher order than quadratic, which is a form similar to that of
L-

_ the original spectral equations (3.1), However, the use of a nonlinear

_ approximation for the parameterized components will introduce hlgher-order

.r nonlinearities which _y alter the form of the steady polynomial for the

_ parameterized model. This will be discussed in Section 4.

a. Application and testing techniques

T.n the absence of observed data, an alternative procedure is ueeded to

produce the data sacs required to compute the values of the :oments that

appear in (3._). A simple method for creating these data is to use the steady

solutions to the original flve-compouent model for various test cases. The

use of solutlons to (2.5) u data has the virtue of being mathe_atlcally

simple because the values of a2,...,a 5 can b_ computed al_ebraically once the

roots of (2.6) are found. In addition, the steady solutions to (2.5) provide

examples w_th which the solutions to the parameterized _odals may be compared.

A standard depiction of the steady states is a one-dimensional cross-section

through phase space, in which we plot the magnitude of the zonal component a 1

versus a single forcin8 rate. In this study, ve choose to compute the steady

solutions a I for various values of the zonal forcin 8 rate hl, while the

. magnitudes of the remainiu_ para_tars remain fixed. Thus, the moments of

the spectral components, and consequently, the values of the parmtarlzation

functions F will depend only on the value of h1.a

For a discrete number k of values of hl, the moments are 81van by

k

• _--_ " _ f(hl) i p[f(hl)i] , (3.8)
i=l

mlli ii i iiiiiii [
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W,

in which f(h 1) can be any function of the spectral components, while the !I.

su-mmand is the ith value of f(hI) multtplled by the probability that f(hI)

_.quals that value. In this study we consider both uniformly and normally

dtstriou_ed values of h I.

With the uniform distribution we assume p[f(hl)i] has density

I/(hla,hlb) over some finite interval [hla,hlb], and use randomly generated

values of hI to produce the data points f(hl)i. In this casein(3.8) reduces

to a simple average.

1

If inotead we aasuq_e that the values of h I are distributed normally with

aean hI and otandard deviation ol, then (3.8) can be w_itten in the form I

_ [ f(hl)P(hl)dh I , (3.9)
!

In which p(h I) is the normal probability density tuaction of hI. An advantage i

of using the normal distribution is that, in the proper form, (3.9) can be

evaluated easily using a Rerulte polynoalal approximation. For exaaple, by i

making the appropriate substitution in (3.9), ve would obtain the correlation !
J

m ,

a-"_m " anam exp ["_2 ] dx ,j._lWi &t,t,lLaal,,,L (3.10) lt
l

m

in which the quantities v1 arP. tmlghting factors correspondl_4_ to the zeros xt T

t

of the Heratte polynoLLal (Abramovitz and Stagun, 1964). Here relatively few

data points are required compared with _le nuaber used vlth the uniform

distrlbut£on. In this study, we use k-200 randoa values of hI vlth the

uniform d£stribution, while in (3.10), the value of k-16 corresponds to a

distance from the man for which vl~IxlO'£O. !
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Finally, a weighting procedure must be employed whet', for a particular [[
!

value of hl, (2.6) has multiple steady solutions al, whic_ correspond to _,

multfple solutions for each component a2,...,a 5. For comparison, we will

consider two weighting procedures. The first is useful for determining the

general form of the parameterized exFansion_; with it, the solutions are

weighted equally regardless of stability. In the second approach, we simulate

the use of observed data; one stable sclutlon _s selected at random. These

procedures will be discussed in Section 4.

b. Effects on stability _

The preservation of bifurcation and stability propertJes in the

parameterized models is of concern. However, because the values of F depend

only on the moments of the spectral components, they contain no explicit

Information concernin_ the stabilities of the steady solutions. However. one |

might expect fold points such as those In.the cross-section in Fig. i to be _.

preserved by the parameterlzation provided that an optimum number of terms is

retained in (3.3). The preservation of these points will ensure that the _

!number of steady solutions produced by the parameterlzed _cd=:o ._.._. -:_h

that of the original. However, as permltced by linear sCability theory, the _
7

perameterization may reproduce the original cross-section, but reverue the i

• i-_ --__ of thestabilities of the solutions. In th4_ case, the s_n& v_ o_ o

eigenvalues are reversed, ._

• Hopf bifurcations, which denote the appearance of temporally periodic ,4

solutions (Marsden and McCracken, 1976), may result in a loss of stability at

a polnt on a steady so%c_.Ion other than a fold, or turnlng, point (Fig. I).

Although Hopf bifurcations may .-:Ill appa_.r in the solutions to the

para_terlzed models, the likelihood of preservlng chair locations car, no_ be

assured owln& to the exclusion of information concerning temporal solutions in

1986002282-125
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computing the values of F . As a result, an opCiaum paraaecerizacion based on

(3.3) may produce solutions whose cross-sections in phase space are zlmilar co

chose of the origlnal _olucione, but whose qualitative behavior may differ

owing to changes in stability. Because this is a feasibility study, and

modeling steady bifurcations is the primary interest, no effort has been made

: Co account for sC_billty changes due to Hopf bifurcations. However, _ w:.:.
I

see evidence in Section _ chat, in son cases, _ proper creacaenC of steady

behavior may increase the likelihood of preserving the temporal behavior of

_he solutions.

c. Truncation types

The parameCerization technique developed in this section will be applied

I
co two subsets of (2.5), each concainlng three components. In each peta-

l meterized subcet we retain the zonal component a 1 and _o of the remaining

i
dlscurbance components In this way, any three-component subset of (2.5) can I

be categorized as belonging co one of _o qualitatively different classes of .

J

_.uncaC/one.
!

parameterize a representative of each clase. The two classes of I
We will

!

cruncs_c_ a_e c_vea!_d uvon inspection of the spectral expansion for T(x,t) k,.-

given by (2.4)_. The ._-_sls_uucttons associated with A2 and A3 correspond to

wave ._mber am1, whll: those £o_" a_ and A_ correspond to n-3. The members of

each pair difi_r _ly in pna_c in the _coal direction• We consider the

truu:_tions in Class I co be chose in which both components of either wave

nua_r are retained, while the effects of the remaining wave number are

•, paramsCer._._ed. The members of Chls class are the subsets {1,2,3} and (1,4,5}

In the Class II cruncatlons, we recaln one component of each wave number

resulCin_ in Cbe choices (1,2,4}, (1,2,5}, (1,3,4} and (1,3,5}. The subsets :

i (1,2,4} and (1,3,5} represent special cases whose properCies are discussed 1

t

in S_ccion 4. _,

.' i_|
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From Class I we consider the subset (1,2,3} in which the effects of wave

number n=3 are paraueterized:

! I

- Dla3a 4 + Ula2a 5 - Via I = h 1

!

- D2ala 3 - P3ala 5 + B2a 3 - V2a 2 = h2 (3.16)

!

D2ala 2 + D3ala 4 - B3a 2 - V3a 3 - h3

In (3.161, a_ and a_ are expressed as functions of a 1, a 2 and a 3 based on !
,I t

(3.3). The use of (3.16) is founded on a philosophy toe.only employed to _
i
tparameterize snmll or sub-grid-sc_le processes whose effects need to be

incorporated into the large-scale components of the model, A typical example

is the paraRterlzatlon of surface haa_ fluxes in operational synoptic- i

!'scale flnite difference models used co forecast the ]_trge-scale flow of the "

middle latitudes. r

As a representative of Class lip we consider the subset (I,2,5}: i i

! ! i

- Dla3a 4 + Dla2a S - Via I = h 1

, , [. - D2ala3 - D3ala 5 + B2a 3 - V2a 2 - h 2 (3.17)

t

t !

D4_la2 + Dsala4 . SSa4 _ Vsa5 . h5 t

Thl8 subset differs phys_cally, althoush not mchsutLcs].ly, froa (3.Z6). In

(3.16) we eLtsht expect to represent the behavior of the ssaller wave mmber

1986002282-127



I

i

, 126

components more accurately while representing implicitly downocale energy _,

transfers, This concept is analogous to the creation of an eddy viscoslcy in [i'"

which we paraaeterlze the cascade of energy from small to large wave numbers

(Dutton, 19768), In general, chess mall wave number components contain a

large percentage of the total energy of the original system. Conversely, in
q

(3.17) we recaln a higher wave number (and generally less energetic) component

of the flow in lleu of a more complete reptesentatlon of the larger scale.

Thus, _n (3.17) we represent expllclcly one avenue of downscale transfer at .

_i the expense of a coaplece explicit representation of cranafers between ;

-I large-scale couponent8.
j

i

|
t

!

- !
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4. OpClmum p•r•mecerlzation II

To •pply the p•r•meceriz•cion scheme, we _et select • cermin•tion level

for the series (3.3). It is re•seeable to assume chat an optlmum

p•r•meterlz•tlon can be obtained by recalnlng only the m terms in the series

th•c are Qecese•ry co describe, to some desired accuracy, the steady behavior

* of the original solutions. To find the m terms, we terminate (3.]) •c some

number M _ a of terms and, proceeding as from (3.4) to (3.6), we generate M _'_i

o linearly independent equations whose coefficients •re the moments _--_1)" The _ r

optlmum parameteriz•tion is determined by the m si_nlflcant terms in the

solution F_ to the resulting system of equ•tlons. IC _r111 be shown that the

maximum permissible value of M for which a llne•_ly independent system of

equations can be generated depends significantly on the data coverage.

Moreover, we observe that, for ch_s study, the data coverage requirements •re

controlled, in part, by the topological forms of the steady solutions to the

five-component model.

In all nonllnearly interacting flows, th_re are certain disturbance

components between which no exchange of energy occurs via nonlinear

inter•crises. In the five-component model (2.5), we observe no nonlinear

terms containing the products a2• 4 or •3a$, _ich lead co the special subsets

(1,2,4} and (1,3,5} noted in Section 3c. An advantage of studying these

special cases is that simple analytical solutions can be obtained from (2.5)

for the omitted spectral components in each subset. These solutions •re

" expressed as functions of the three reme£nLng components; thus, they •re o_ a

form which is sia_lar to chat of the parameterised expansions obtained from

(3.3). _ • first 8uses for any model, _e _l.ght expect • reasonable

ter_tnaCion level M for (3.3) co be datermAned by the hAghest--degree ter_
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that appear in the solutions co its special cases. For example, if we assume _/

that the values of al, a3 and a5 are known, then from (2.5) we obcaln

l

a2 " _2 [-D2ala3 - D3ala5 + B2s3 " h2j (4.1)

and

1

m4 "_4 ['O4ala3 - DSala5 + B4a5 - h4] " (4.2)

" 4

gxpresslon8 sl_L1ar to (4.1) and (4.2) result for the coefficlencs a3 and a 5
-I

_ in the other special case. By inspecting the right sldes of (4.1) and (4.2), •! ;
J we might infer thac an optimum paramecerlzeCton would involve expansions that _

! contain no terms of degree higher than quadratic. Horeover, because the ferms

of the equations In (2.5) are Cyplcal of chose found in hydrodynaulcal systems
I

regardless of the severity of the truncation, (4.1) and (4.2) are likely to be. ! !

representative of the optimua parasecertzed expansions for any model of this i i
y

type.

/
Accordingly, we termlnaCe (3.3) so chat the psrameterlzed spectral

components are approximated by :

an - FnO + _ Fats _ + _ Fntmsta a , (4.3) . i

&-I &-I pl : I

from vhlch _m generate g < I �3)12linearly independent equations, i
g

depending on the dace coverage. Because H > • tez_1 are required in (4.3) co

obtain the correct values of FQ, we vlll begin vlch the complete quadratic
m

expansion. Analogous co the LLnmar ezample in Section 3, the values of the -

1

J

%

_J
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j,

_unctiona v._ •re the solutions co oh, ,y, ce= |[p•raaeteriz•cion
!

L-t _=1 m=t

L L L

L p L L J.

• p["lq["l [a_--_Paq" FaO•P•q L['IYnL•/'aPaq L_I m,,l[ FaLm•_am•"•q]" * _

For L - 3, (4.4) becomes a seC of ten lln••r Inhomogeneous equ•tlons provided

thaC the moments •re known. For example, in the 8ube•t (I,2,5}, we would _-

par•Mterlze a3 •ccordlng co (4.3) and obtain _

a ,,F +F a +F • +F • +F a2+F as +F •a
3 30 31 I 32 2 3_ 5 311 1 312 I 2 31) 1 5

2+ y aa +Y • 2 , (4.S) ;+ F322a2 325 2 $ 355 5
I

whlch corresponds C.o the flrsc _quacloa _n (4.4). The remaining nlne

equations in (4.4) are produced by _ulclplylns (4.5) by the funcclons f(h l) i-

each term on ice rIshc side, and then averssins co produce the moments.

a. DaCe Types _;
!

" We now Investigate procedures for creating the daCa necessary co compute _!

r,he values of the moments Chac appear in (4.4). Several types of dsCa tr_ll be t
m

. considered, Fo: each d_ca type, us employ one of the two ecac_sctcal dlscr_- "

-=_ buttons dlscnssed In Section 3a, _md • us_shCLn_ procedure ChaC dec•rains• the

probability ¢haC a particular steady solution results when the response co a

value o_ r.h¢ forctuli Ls mo¢ uuLque. The dsCa _lso trLll be cluslfied

accordta_ co stability in two ways. We rater to a data sac In vhlch all S--

solutions are i_eruJ.cced re|ardless of ecablltcy as bolus a couplece-dat;a set;, |

ti .rJ m
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and one in which only stable solutions are permitted as being an observable-

data ==t (Table 1).

Considering the preceding criteria, we will select four types of data and

._.xamlne their effects on the values of the parameterlzatlon f.nctlons F_.

For convenience, we denote each data type by the first letter describing Its

stability class (Observable, Complete), subscripted by the first letter

describing the statistical distribution of the zonal forcing values (Uniform,

Normal). Thus, the first data type in Table I, which consists of observable

solutions chat are uniformly distributed, is referred to as type 0U. Each i

data type fulfills a specific testing purpose which we now discuss briefly. I

Type 0 U data are intended to simulate observed data in the simplest !
, i

unner. In this case, the values of h I are assumed to be uniformly _.

distributed and only stable solutions are considered. When multiple stable [

i 'solutions occur, we select one solution at random and assume that only thls

solution contributes co the calculation of the an=ants for the corresponding

forcing value. Thl8 is consistent with the fact that, with observed data, the _ .-

occurrence of any one state sight be as equally likely as another. Here, the I '_

tanneries are coaputed using (3.9).

Type CU data differs frou type 0U in that the complete set of sLeady

solutions from each test case say be used as data. By u_ing a slnllar

dlstrlbutlcn and weighting procedure as for type 0U data, we permit the

occurrence of unstable solutions co be as equally likely as stable oats when

multiple solutLone result, Type CU data trill be used to deterulne whether the

Inclusion of unstable solutlone as data in the paraseterlzetLon schem Is

cruclal for reproduclng the coaplete forns of the steady states.

Date types CN a_d 0N represent special cases of the previous date types, i

in vhtch us assume thaL oh: values of the soul forcln8 rate obey 8 norual

]986002282-]32
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Table i.

Data types used for calculatln8 the values of I_g

the parameter£zatton func_ions F . _"

ScablliCy class Scat. distribution Weighting Applications

Type 0U Observable Uniform i Random Observations

Type CU Co_plete Unifocm 1 P_ndom Research

" Type CN Complete Normal l/r [btsearch

Type ON Observable Normal 1/s Research/
Observaclons

!

t ,
I

I

" i
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distribution. While actual observed data may obey a more specialized |j,'
iJ

distribur.ion than the unifocm one employed in types 0U and CU, we do not

propose chat a normal distribution for hI would be more physically

representative than any of the other standard dlstrlbutlons. Because

relatively few data points are required to calculate the _oment8 with the

-: Heralte approximation, _e employ a different w_Ighting procedure with these

i data types, as show_ in Table i. When _ultlple solutions occur, all

permissible ones are weighted equally. Thus, with type CN data, we welght

: equ&'-ly each of the combined total number r of both stable and unstable

solutions, while b'ith type ON data, _ only welght equally each of the number { :

• of stable solutlone. We have verified thaC these procedures are analogous

to using a randomly selected, fully wtlghted solution (a_ in types 0U and CU)
[

when uny normally distributed dara points are used. +'

Because :he data coverage in a particular test case u_y depend _ ,

!slgniflcanc-y on the data type used, ve expect chac the maximum value of M for

which (4.4) yields a linearly independent system of equations also will depend i +,I

on the data type. However, we can decsrulne beforehand the number of linearly I

b _

dependent equations in (4.4) by compuClng the eigenvaluee of its complete L.,

right side. A vanishing eigenvalue (and thus, a vanishing deCenLtnant) i
i. b

Indicates a linearly dependent pair of equaClons, one of which may be , i

discarded without altering the eyscea. F:ovlded thac we cLtt the proper
t

lines, we nay repeat this process uncll an Independent sac of equations "

reulna. Thus, when we obtain a system _.n t4tlch each of the resuJLning

e_.genvalues XI,...,_H are nonzero, then a solution to this reduced sysceu

caw, be round. In the foliovi_j subsection, ve ezs_ne 8 technique for

identifying chose terse _n (4.5) that 8usc be elisinecnd when an independent i

sac of equatLou cannot be generated _ro8 r_l entl +'e quadratic expansion.

N
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b. Complece-dar a sets

For each data type, solucioc, s co the paramecerized _deis will

computed numerically for four test _._ts_s. These cases provide examples In

which the stabilities and the configurations of the steady solutions vary in

. complexity, allowing a systematic examination of the skills o_ the

paramecerized models. The tixed va.ues of the cLtmensionless parameters in

each rest case are listed in Table 2. For the parameterized models, the

values of h I and el used _r_th the noruml dlscrlbutlon, and the intervals
{

[hla, hlb} used with the uniform distribution, are gzven In Ta_l_ 3. The

cross-sectlon_ of the solutlons for the test cases appear in Fl_s. I-4, and we

begin examining the results of one parameterized models using th_ complete
I

sets of solutions, _lch correspond to data types CU and CN.
i

i) The sub;e'. {1,2,5) _ .
!

If ve consider the three-equation _ubset (3.17) and paramecerize a 3 and

1a4 according co (4.3), then we obcaln

a' - F + F a + F • + F 8 + F a 2 + F .J a + F a a
n nO nl I n2 2 n5 5 rill I n12 _ 2 nl5 I 5

+ F a 2 + F • a + F a 2 , n = 3,4 . (4.6)
n22 2 n25 2 5 n55 5

Now _rlth (4.6) as the foundation of two _ets of Linear inhomogenaous squarlons

of the form of (4.4), ve compute the moments using the 5olutio:,s in Figs. L-4

• as data. For example, we consider cast case 1 m_d use type _ data, Because

ve are interested in testing the aSility of the psrameterisetion to preserve

the nonlinear behavior ot the steady states, ve include forcing values which

produce mtltiple steady solutions in the data. 3_ed ms the symmetry of the

solutions in Fig. 1, ve consider values o! h I in the interval [- 0.05, O.OS]

and compute the mmutnts according to tim specie/cations tot the type CU date
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Table 2.

Fixed parameter values for the four test cases in Figures 1 - 4.

Case I Case 2 Case 5 Case 4

h2 O.300 -0.300 2.000 -0.670

h3 0 -0.400 3,000 -I.005

"2 h4 0 O. !00 ! _000 0: 335 ' -

l

h5 0 0 1.000 0

k 1 1 I 1

i

v 0.040 0.040 0.040 0.040

0 0 0 • 500 O.500
i

{

1 Table 3.
"/ i

The values for each test case of the mean zonal heating rate h I and t "
the standard deviation Ol used with the normal distribution, and the

-i interval [hla,hlb ] used with the uniform distribution. _
_f

-1
Case 1 Case 2 Case 3 Case 4

h"1 0 0 0 -0.26

Ol 0.01 0.03 5.00 0.03 i

[hla,hlb] [-0.05,0.051 [-0.50,0.501 [-3.00,3.001 [-0.40,-0,10] iJ

' ' i

--_ : .,__. _..w_._, .................._. --.,_. , -_1.__'_
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0 1 ._

i

J f

!

!

-o.os o o.os I '
hl _...,

o i
Figure I Cross-section of the steady solutions to the _ive-component model !

for case 1. Stable solutions are denoted bY solid l£nes, and
unscebZe solutlons by dashed l£nes. Hopf blfurcaClons occur on
the upper and lower brenches near hI = _ 0.01.

m
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2O
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|

J

f

_ t
-I.0 -0.5 0 i

hi

I

I.

WiliUte 2 As in Wig. 1 for ¢aae 2, b ltopf bifurcation occurs on the lower
branch naar hI = - O,I.

i
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I0' ! I , , ,
I

r i

-lO-
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}
!

-20 - -

1 -i-50 t i i i t I}
0 I0 20 _.,;

hi _;i

" I
L
t

* Figure 3 As in FIg. 1 for case 3. & Xopf b_furcat£ou occurs on the _Lddle i 1
branch (undergO.de of spike) near h I • 5.0 so Chat there are three i .
positive e£genvalues As the tip of the fold, or spike, is
encountered. At this potnc, one elsenvaZue vanishes and the upper
branch I_ unstable wlth two pos_tlvm, but unequal., eIsenvalues.
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m qilm i ,nmmD,nli _im i ,_ll i !

5 -0.4 -0.2 0

hi

. t
t

?Igure 4 As In Fig. I for case 4, Uopf blfurcaClons appear on the mlddle
branch of the confisuraClon near the fold point aC approxlmately ;.
hI - - 0.33. and on the lower branch near hI = - 0.23. , i

J

E

rI
:t 1'4

t

f,
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In Table I. In this case, the right sides of the linear syste_ generated [i

f,_" from (4.6) contain only nonzero eigenvalues so that M - I0 equations can be

:i solved to obtain the parameterized expansion for each spectral component.

This is true for both component_ in all four test cases in Figs. 1-4. In each

case, the interval [hla, hlb] includes data in regions of multiple solutions.

The values of Fa for all four cases using type CU data are presented in

Table 4.

From Table 4, we see that several terms in F_ consistently obtain

negligible values when compared with the remaining ones. Those terms that are
-

negligible in all four cases are Fnl, Fnll, Fn22, Fn25 and Fn55, n - 3,4.

Several other terms sometimes obtain negligible values but these cannot be

neglected generally. If we oait the five terms _entioned above, then (4.6)!
can be written i

i[ a' - F + F a + F a + F a a + F a a , n - 3,4 . (4.7)
n nO n2 2 n5 5 nl2 i 2 nl5 1 5 i

|

Significantly, the quadratic terms in (4.7) are linear functions of the
r

|

disturbance components a2 and a5, and this permits the use of simple linear

! techniques to obtain a steady polynomial for the parameterized model. More- _.

over, it is pleasing to note that, with the exception of an additional .ear

term in (4.7), the forms ot the expansions for a' using the m - 5 significant
n

terms in the solutions F_ correspond to those in the analytical expressions

(4.1) and (4.2). However, as shown in Table 4, this additional linear term is

negligible in cases when _ - O. Thus, to some extent, each term in (4.7)

appears to play the same role as its counterpart in the analytical

expressions. For example, we observe in Table 2 that cases 3 and 4 differ

only in the values of their forcing ra_es h. In (4.1) and (4.2) the forcing

appears only in the Lnhomogeneous teL'as hn/Vn, n - 2,4. Analogously, we see

]986002282-]4]
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Table 4.

Values of the parameterlzation functions F for _
(x

_,.
the subset {1,2,5} using type CU data.

Case 1 Case 2 Case 3 Case 4

[-o.05,0.0s] [-0.5,0.s] [-3.0,3.01 [-0.4,-0.11

g30 8"03xi0-3 5.00 -22.70 11.59

F31 7.15x10 -14 4.91x10-14 -4.78x10-13 2.26x10-10 _

F32 1.39x10 -12 6.91x10 -8 -3.06 -3.06

F35 6.48 6.48 6.45 6.45

F311 7.23xi0-13 9.73xi0-15 9.45xi0-15 -l.07xlO-ll

F312 -5.03 -5.03 -4.93 -4.93

F315 1.57xi0-I0 -2.UxlO -6 1.II i.II _
l

J

F322 3.10xl0-13 8.44xi0-12 lolSxl0-11 7.06xi0-9

F325 7.14x10 "13 4.77x10-10 2.18x10-9 -1.07x10 -7

F355 3.64x10 -9 -5.49x10-10 -2.12x10-9 9.69x10 -8

F40 0.03 -O.28 -i.73 -I.19

F41 1.09xlO-15 -1.23xi0-14 7.11x10-15 2.19xi0-14

F42 8.00x10 "3 8.00x10 -3 0.08 0.08 " t

F45 1.36x10 "I 3 5.30xl 0- 7 -O. 04 -0.04

F411 7.80x10 "14 -2,19x10-15 7,99x10-17 8.91x10-15
b

F412 -7.32xJ.O "17 1,11x10 -7 O. 12 O. 12

F415 1.40 1,40 1,37 1,37

F422 3,53x10-14 -l,bSxlO-_2 1.49x10-13 6,15x10-13

F425 4,33x10 -14 -1,08x10-10 3.07x10 "11 -4.00x10 "11

F455 4,27x10"10 "1,30x10"10 "3,08x10-11 9"89x10"11 i
I

%

NI_'L

_ ,_..... , ° i
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I in Table 4 that only the values of the Lnhomogeneous terms Fn0 in (4.7) differ

between cases 3 and 4 for each para_eteclzed component.

If we substitute (4.7) into (3.17) and apply the same linear techniques

as those used in Section 2, then the first equation in (3.17) becomes

• _ DI[F30 + _ (F32s 2 + + +
625 F3585 F312als 2 F315als5 )]

[P4o+ (F4zs2+ + + ]
• 625 F4585 F412als2 F415als5 )

DlS2S5

+ 2 Via I - h I - 0 , (4.8) !
_25 i

i

in which _

f

3 2
s_ c_3aI + c_2aI + c_laI + Cto

-- = , _.= 2,5 . (4.9)

a_ _25 d4al4 + d3al3 + d2a12 + dla I + do

The polynomial coefficients in (4.9) are lengthy and are given in Gelaro !
!

(1983). qowever, it can be shown that the coefficient do of 625 can never +
't

vanish, implying that the solutions a_ exist for all parameter values except

L4
the physically inadmissible case V_ = 0. Because 625 Is quartic in aI and the

!, " viscous term -Vla I is linear in al, (4.8) becomes a ninth-degree polynomial

in a I when the denominator has been cleared and multiplied by 6252 . The real

1 • roots of (4.8) are the steady solutions to the paraaeterlzed subset [I,2,5}. ,
+

+ The fact that (4.8) is of odd-degree, similar to the steady polynomial for the i

+ i
five-component model, Is essential for preserving the structure of the I

original steady solutions.

Figs. 5-8 depict the numerical calculations of the steady soluclons to

the parameterized subset (1,2,5} using the values of F.a given in Table 4.

_ _llll m .
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3/ i i i

F

i ,',
: !
i
l - !

i -3-,, I j _
i -0.06 0 0.06 i

hl l,

! ,

F/4lura $ Croes-sect_on of the steady solutions to the paraaetsrized subset
(Z.2,5} for case I using the vaZuss of F in Table 4. Note that

=
the Hopf bifurcations on the upper and lover branches in Fig. l
do not appear here so that these branches remaln stable up to
each fold point:.

_m _A_ q_''_
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1
Filure 7 As in FII. S for case 3. Although the stabilities of the

solutLon8 appear 8Lnilar to Chose in Fil. 3, the llopf bifurcation !
Chat appears on the atddle branch _.n the ortlinal cross-section
has been shifted to the upper branch in the perametarLzed modal. '
Thus, the numbers of positive and neiative eigenvalue8 _tffer for

the correspondtn8 solutionJ La each mdel. I

t'
I

,I
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i l I I I'-5 -0.4 -0.2 0 1

hI _

i
• i

Figure 8 As in Fig. 5 for case 4. The Hopf bifurcation that appears on the
• loeer branch in YlS. _ does noc appear in the solutions Co the i

paranecerized aodel.

I
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Clearly, the parameterization has reproduced the configurations of the steady

st-'.esquite accurately In all four cases, implylng _hat the steady

bifurcation points are well preserved. Even in case 3 (Figs. ] and 7)

involving five nonzero r_tes of forcing and rotation, the _gnltudes of the

solutions t:o the original and to the paramaterlz_d models agree to several

decimal places. However, the stabilities of the solutlons to each model

differ owing to the lack of information in the parameterized model concerning

the original temporal _olutlons. For example, the upper and lower solutions

of the cusp surface in Fig. 5 of the parameterlzed model lose stability upon

,, _eetlng the middle solution at each fold point. Howe,,_r, Hopf blfurcatlons on

the upper and lower solution# in Fig. I result in a loss of stability before _:

the fold points. In this case, the _pf bifurcation points on the solutions

to the original model do not appear on those to the parameterized model. In ";

,1
some cases, Hopf bifurcations appear o_ the solutions to the parameterized :',/

!

models, but their locations are not preserved yell. This is demonstrated in [_

Figs. 2 and 6. Here the lower solution in each figure Lose_ _tabillty at a
t

point other than fold point, but the locations of these points differ in each i!

1"model. SioLtlar behavloc can be seen in the two remaining cases (Figs. l, 4, 5

and 8).

Analogous to the above testing conducted _rlth the type CU data, value_ of - ,!

ch_ parameterization functions Fa for tn_ subset (1,2,5) were computed for ii_.,

the four test cases using the type CN data described in Table 1. The values _i
g I j

of _1 and ol for each case a:e selected so that the regions of interest in

F188. 1-4 are boun_ed by values of hi that are _o more than approximately

+_.3o I froo the -san. The resulttn_ values of Fa are nearly identlcal to those

obtalnad vlth the type CU data (and thus, not shorn here), further conflraln8

that the • - $ s_llnlficant ca_s Ln (4.7) are those required for an optimum

L
r
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parameterization of the components a3 and a4. Moreover, the fac[ =hat the
l

same values of _ ap@ _ yield s_mliar values of F_ foL Che humo_eneou& _erm_ [n [/

each case In Table 4 indicates that these coefficients have functional forms

similar Lo those obtained in (4.1) and (4.2) for the special case. It may be

noted that values of Fs were computed in a similar way _or the special

subsets {I,2,4} and (1,3,5}. The resulting values of the significant terms in

• the solution Fs were the same as those of the analytical coefficients obtained

for the parameterlzed components in each subset. For example, in (4.1) it can

be shown that - D2/V 2 = F213 - 5.305. Unfortunately, such dlrec_ compaclsons

are possible only for the special cases, but they do demonstrate the validity

of the numerical scheme.

2) The subset [1,2,3}

To apply the parameterizatlon technique to the subset {I,2,3}, we begin
l

with expressions for a4 and a5 that are analogous to (4.6). Again, we con- _ '
!

sider type CU data and use the same intervals [hla, hlb ] as before. However_ t'

in contrast to the preceding results, it is impossible to generat_ M = I0

linearly independent equations from the original expansions in an_v of the test I

t '
cases. In each case, the right slde of the complete system contains one

• vanishing elgenvalue, indicating two linearly dependent equations. Here, xt

is dlff£cult to suspect insufficient dace coverage as bein_ the priory cause !J
of this dependence, owing to the fact that the lame intervals o_ hI were used

as for the subset {1,2,5}. Also, ths test cases are disslmilar enough to make
[

2
1C unlikely that, in every case, lnsu:ficlent data coverage results in exactly

one vanishin& e£ganvalue. Eather, it, Is behavior may be either a resul; of _he

truncatlon Itself, or _he way in which the Can equations are generated.

Following the procedure dlscussed In the previou, section, _ ells/nice a

colum and corrsspondln| row frou the system until ve obtain a sec o_

1986002282-149
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equations which yields nine nonzero eigenvalues. In all of the test cases, I_
F

the elimination of elcher the lines corresponding to the term Fn22a22 or to

the term Fn33a32 yields a set of nine equations for which all eigenvalu_s

_M _ O. It may be noted that both of these terms are among those neglected £n

the paramecerized _xpcnsions for the subset {1,2,5}. Moreover, if we solve

the nine-equation systems which result when either of these terms is

eli_naced from the expansions, then the resulting m significant terms of F_

• correspond precisely to those obtained for the _ubset {1,2,5}. From these

" results it is clear chat the most general form for the parameterized

: components is analogous to that o_ (4.7).

Because the para_terlzed components a4 and a5 are of the prcper form, a

steady polynomial is obtained easily for the parameterized subset {1,2,3}. ii

Figs. 9-12 depict the numerical calculations of the steady solutions for the

four test cases using the values of Fa in Table 5. Again, the cross-sections

reveal chat the steady bifurcation points are preserved in the parameterized

model so that the configurations of the solutions agree well with the original

solutions in Figs. 1-4. As before, differences in stability may be attributed

to Hopf bifurcations.

Although the truncation type does not affect the optimum form of the i

parameterized expansions, it may indeed be a factor in determining the i

termination point M of the series (3.3). We note that the dependent equations

in the linear system described above arise from the two terms in the expansion

coataining the squares of the disturbance co=ponents a2 and a 3. Unlike the

•_ disturbancp components a2 and a 5 in the subset (1,2,5}, these components

represent different phases of the same wave number n = 1. As a consequence,

_, it may be difficult to generate independent statistics corresponding to the

-_' term8 a22 at_d a32. Hence, one of these terms must be eliminated from the
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Tabl_ 5.

Values of the parameterization functions F for |II'

the subset {1,2,3} using type CU data.

Case 1 Case 2 Case 3 Case 4

[-0.o5,o.o51[-o.s,o.s][-3.o,3.o][-o.4,-o.i]

. F40 0.58 -0.83 I.74 -2.34

F41 -1.68xi0 -13 -4.69xi0 -16 -1.89xi0 -13 4.44xi0-12

F4£ 0.15 0.15 0.21 0.21

F43 -I. 91xi0-12 -l.18xlO -8 -0.46 -0.46

F411 _1,28xi0_i 2 1.45xi0.15 _1.44xi0_i 4 _5.08xi0_I 3 i

F412 -9.65xi0 -12 3.99xi0 -8 9.55xi0 -2 9.55xi0 -2 i

F413 -0.78 -0.78 -0.76 -O. 76 !

F422 -3.5xlO -14 -3.20x10 -13 4.28x10 -12 4.16x10 -12 _

F423 3.35xi0 -13 I. SOxlO -13 -3.35xi0 -II -9.60xi0 -12 _'

F50 -i. 22xi0 -ll -0.77 3.07 -i. 65

FSI _7.30xi0_13 _9.02xi0_15 2.84xi0.14 1.33xi0-12 I

F52 -3 •24x10 -12 2 •33xi0 -8 O.46 0•46 _ -_

• F53 0.15 0.15 0.21 0.21 I

FSII _2.69xi0_i 3 5.42xi0_16 2.33xi0_15 _i.19xi0_13 I

• Fsi 2 0.78 0.78 0.76 0.76

FSI3 1.71rtO-11 -l.80xlO-7 9.55xi0-2 9.55xi0-2

F522 -1.96xi0 -13 2.08xi0-13 -5.36xi0-13 1.07xi0-12
!

F523 3.83xi0 -14 3.52xi0-13 4.39xi0-12 -3.81xi0-12 i
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-o.o6 o 0.06 i
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. I

., Ftiure 9 Cross-section of the steady solutions to the paraaeterized subset
{1,2,3} for case I usin8 the values of F_ in Table 5. The Hopf

bifurcations that appear oa the upper and lo_er solutious Qear
h1 - + 0.01 Ln the original sodel have been sh£fted slightly to
approxtiately h1 = + 0.005. llovever, the sense of the stab/lities
of the upper and l_er branches Is reversed compared b'lth the
solutions £n Fig. 1.

|

ii :!
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Figure l0 Aj in Fig. 9 for cue 2. Rere the upper branch is unstable via a
Hopf bifurcation. The itopt bi_urcacion that appears on ch_ lower

branch _n the orlglnaZ soluclons near hI = - O.l has been shlfced
to approxlmately h I = - 0.58 and the sense o_ the scabillcy of
chls branch Is reversed.

T

_' - Ill ....... j!
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Figure 11 As in FiS. 9 for cue 3. In constrast to both Fi_l, 3 and 7, the
lower branch, whlch tends toward strongly negatlve values of ai, ._
is found Co be unstable vii a Hopf bifurcation. Xote _so that

the upper solution is stable here. !
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hI

L

Figure 12 As in Fig. 9 for case 4. Here the upper branch is unstable via a

Hopf bifurcation. Although a Hopf blfurcaclon occurs near

hI = - 0.2 on the lower branch of the configuration, it Is

unnoClceable in the figure because chls branch _ unstable for a11
• values of hI in the cross-sectlon.

i.i
I
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parameterlzed expansions in order to produce a linearly independent system. 7

the disturbance components both cepcesent wave number n - 3. Consequently,

the elimination from the parameterized expansions of one of the terms

containing the squares a42 or a52 is necessary to produce a linearly

independent system of equations. I_ general, we may conclude that the

physical differences between the class I and class II truncations have little

effect on their abilities to reproduce the steady behavior of a larger system .
4

provided chat the data coverage is sufficient. However, in cases where data

is sparse, the use of a class II truncation, in which a representative of each

wave number is retained, may be more likely to produce a sufficiently

independent set of correlations in the data. !

c. Observable-data sets !
!
!

The feasibility of using this parameterization scheme operationally

I

depends on its success when unstable solutions are excluded from the data. i

However, the maximum value of M for which a linearly independent system of
]
I

equations can be generated may be reduced significantly when the data used to

I compute the moments includes only stable, or observable, solutions. This :
I i

I corresponds to data types 0U and ON in Table i. It can be seen from Figs• I-4 4

I that a significant loss of information may result concerning the nonlinear ° I
!

characteristics of the cross-sections when the unstable solutions are

excluded. It will be shown that, in some cases, this loss of information a

makes difficult the successful use of the Hermlte approximation of the

moments, owing to the relatively severe limitation that h I and al place on

the data coverage. For brevity, we limit the discussion in this section to

the subset (1,2,5). However, we have verified that all remarks may be

generalized to apply to both classes of truncations.

q

D:o

]986002282-]56



/

155

As in the complete-data experiments, M = i0 linearly independent

equations can be generated to obtain the values of Fa for case 1 (Fi_. 1),

using either data type OU or ON, The resulting m significant values of F_ are

the same as those obtained for the complete-data experiments shown in Table 4.

. " Here, little information concerning the nonlinearity of the cross-section is

lost when the unstable solutions are excluded because the stable portions of

the upper and lower solutions overlap considerably. Thus, a sufficiently

large region _f multiple solutions remains to necessitate at least a cubic

solution to the cross-section.

Ue obtain similar results for case 2 shown in Fig. 2. Again, M = I0

linearly independent equations can be produced using the type 0U data with the

interval [- 0.5, 0.5]. Using the type ON data, we obtain ten independent

l

equations by slightly adjusting the value of Ol to include several values of

hI which yield multiple stable solutions within a range of _ Ol from the mean

_l.

However, the maximum permissible value of M is less than ten for both :

itest cases 3 and 4. For example, if we consider test case 3 and use type OU

data over the interval [- 3.0, 3.0], then we obtain three vanishing eigen- L N

values on the right sides of the linear systems used to compute the values of i
. !

Fa. Thus, we expect that a maximum value of M = 7 linearly independent !

equations can be generated from this dat_ set. Using the expansion (4.7) from

" the complete-data experiments as a guide, in addition to the analytical

results (4.1) and (4.2), we find that a linearly independent system of !

equations remains when the lines corresponding to the terms Fn22, Fn25 and

Fn55 are eliminated from the system. When this is done, the remaining M = 7

equations yield the same m significant values of Fa found in Table 4 so that

the para_terlzed expansions are of the form (4.7).

I

_ v v -- ._ __ |

1986002282-157



156

W

These results are remarkable because it can be seen by locating the I

stable solutions in Fig. 3 that a significant amount of information is !cat

when the unstable solutions are excluded. In contrast to case I, the loss of

information makes it impossible to generate M = I0 equations. But even this

drastic loss of information affects only the termination point M of (3.3), and

not the optimum forms of the pafame:erlzed spectral components. Thus, we see

evidence again that the functional forms of the coefficients in the parameter-

. 4

ized expansions are very similar to those of the analytical expressions (4.1)

and (4.2), which depend only on the values of the parameters Dn, Bn, Vn

and hn. It may be noted that for case 4, M = 9 linearly independent _

equations can be generated using the type OU data over the interval [- 0.4,

- 0.1]. In thls case, the elimination from the system of any of _he lines i

pertaining to the three terms Fn22, Fn25 or Fn55 yields a solvable system of _' i:

equations whose solution is analogous to the one shown in Table 4.
t

The iaximum permissible values of M for cases 3 and 4 are reduced further

when type ON data is employed. By slightly adjusting the values of hI and _I,

!we obtain M = 5 and M = 7 linearly independent equations for cases 3 and 4

: respectively. For case 3, it is necessary to exclude all buc the m

significant terms from the original expansion. For case 4, the three terms !
!

• t
Fn22, Fn._ and Fn§5 must be eliminated. The resulting optimum expansions have

the same forms as before, but the values of the parameterization functions may

differ in the first or second decimal places, espe:ially in case 3. As in the . !

complete-data experiments, tests were conducted in which the moments were

i

computed using two hundred normally distributed values of hI instead of the i

Hermits approximation. This was done to determine whether the difficulties

of the type ON d;,ta experiments were a result of the small number of data

values used in the Hermtta approximation. However, the results of these

N

,),
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_: experiments were no more successful, and in some cases, were less successful

than those obtained with the Hermite approximation. Thus, _rith observable

data, data coverage requirements appear more readily satisfied by the use of

_ uniformly distributed forcing values. Moreover, the use of normally

1

-' discrlbuted values of hI requires precise choices for the values of hI and Ol

i, when the a_ount of available data is limited. In contrast, with the random

selection of uniformly distributed forcing values, the range of the interval

_ [hla , hlb] appears co be less critical for satisfying data coverage

requirements.
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5. Conclusion IiA parameterization technique has been developed for general nonlinear

hydrodynamical systems via the objective use of data sets that are derived

from the solutions to a larger _odel. The goal of this work is to facilitate

an improvement in the efficiency of truncated models of hydrodynamical flows

by parameterizing nonlinear interactions involving components outside the

truncated set. Toward this end, we have shown that the intricate branching
$

behavior exhibited by the steady solutions to a severely truncated nonlinear

spectral model can be represented successfully in a parameterlzed subset of "

I thls system provided we incorporate a knowledge of the general struc:ure of

_ the solution qurfaces. The general implication of this result is that the

loss of information due to truncation in all hydrodynamical models is to some

extent recoverable. Typically, this information concerns the nonlinear
I
I

interactions between different scales of motion in a flow, and represents the _ i

effects of physical processes that may be essential in predicting its " i"

long-term behavior.

The general relevance of the results of this study derive from the fact 1

[that the basic mathematical structure of the forced, dissipative quasi-
4

geostrophlc equation is representative of that in most hydrodynamlcal systems. "_:

Moreover, the recurrence of thls structure in the expansions for the " !

paramterlzed spectral components appears to be fundamental to the " "

J

preservation of the complete forms of the steady states. Not surprisingly, we

found that the optimum form for the psraNterlzsd spectral components is that

of a truncated power seri_e containing terms analogous to those in the

spectral equations themselves. In addition, by examining analytically certain

special cases in the original five-component spectral model, we determined

Chat physical effects such as rotation and forcing were controlled by

.J

i
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analogous linear and inhomogeneous terms In both the parameteri,._d expansions

-_ and thelr analytically obcalned counterparts. Owing _o the tractability of

such special cases, it is likely that their exploitation will be a necessary

step in understandlng many physical and mathematical aspectJ of future

hydrodynamic_l models, such as the selection of appropriate truncations.

The presence of specific nonlinear terms in the optimum form of one

paramecerized spectral components appears to be a robust result that is

m

unaffected by the characteristics ot a particular data set. The results of

this study indicate that both the data distribution and the truncation type

may affect the available number of degrees of freedom in compuClng the values

of the coefficients in the parameterized expansiona. In the most difflcul_

cases examined here, the maximum amount of freedom is afforded by using

uniformly distributed data with a truncation that retains a representative

component of each wave number in the original model. However, it should be

noted that all possible classes of truncations examined In this study

demonstrated approxlmacely equal skill in preserving the steady solutions co

i

the original model. Also, additional test_ dre required to determine how the I
!

values of the coefficients in the e_pansxons for the parameterlzed coEaponents

will be affected by the use of data "sets chat are less '_ll behaved than the

ones considered in this work.

The results of thls study suggest some important topics for future

research. An obvious example is the application of this parameterlzatlon

technique to slgnlflcently _rger hydrodynaalcal models containing many

components. Research In th_s area stghC be useful in determlnlng the extent

to which we can para_terlze the nonlinear processes in • model without

elgniflcsntly alterlng the behavior of the system in Its orlglnal form. This

inforux_lon could be used _ a suideltne in attempts to represent the behavior

i'
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of a large complicated model via a smaller paramacerized subset of the

original _yscem.

Another topic of future research £s the preservation in th* parameterized

models of the stabitltles of the orlglnal steady sotucions by accounting for

the appearance of Hopf bifurcation points. These are points a_ which a steady

solution loses stability co a temporally periodic one. Procedures muse be

developed to Incorporate information into the parameterizatlon scheme

concerning these temporally per_odlc solutions. Work on this issue has begun

in Chapter 6 of Shirer and Wells (1983) concerning the unfolding of spectral

models. This work may provide some insight into the development of parameter-

Ization techniques in which the parameters necessary co portray temporally

periodic behavior may be £dentlfled.

Firtally, b_cause _II hydrodynsmlcal mode2s consist of finite ste_s of
I

ordinary differential equ_tlons, we believe that advances ic numerical !

: modeling techniques derived from studies of low-order spectral models will be ;

appllcab_e _n a _n_ral sense.

%
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Appendix A

Interaction Coefficients oE the Fourier TransformarLon (2,3)

The quantities Dp and Cq represent ',.t,terartioncoefficients for tie

Jacobian and rotational terms respectively in (2.3), and are defined ae

_mTn
D - j'-"C-"a(*k'*aid-x '

" _ X n n ,, I,...,N

p-k,m,n

_n _$_ .q = r, m

Cq = f _ _ dxA _x - '.
X .'I

!
!
o

* i
J

{

• i
I
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AppeLL_dlx B
Ml

The parameters of Dn, Vn, 8u and hn in (2.5) are coefficients that

i represent the effects of nonllne=r in_=Laccions, viscos_ty, rotatior and

i forcing respectivo-ly, and arc defined _s

. IX3 - k4 4k
I. Interaction coefficients: O1 kt ] _ ,

D_-[ _2 ]8_3,, '

i)3 [_I-,_5 8k" _ ]I-_ '

D4 [,il- 13 8k" _4 1_" ' i
!
i

'_1 - ;_5 72k !

DS"[ _',,]5"r_', ' ' i

II. Viscous tezas: Vn = V_n , n = I,...,5

o

= _k-
III. Rotation terms: _n _ , n - 2,...,5

t

XV. Forcing terms: h I ....
)_1w

211
n

hn =_nw , n ," 2,...j_
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• I. Introduction m'_

Recently, Miller and Gall (1983a) presented the results of a numerical _i!
investigation of the axisymmetric states for an Incompressible fluid in a

spherical shell. The work represented an extension of the work by Williams

(1967) for the cylindrical annulus. In part, the work reported by Miller and

Gall was motivated by a desire to model the base states that may be observed1 °

in the NASA Spacelab experlment AGCE (Atmospheric Genera) Circulation

Experiment). This experiment will study the response of an incompressible
q

fluid, confined to a hemispherical shell, to imposed external temperature

4
differences. The fluid will have a dielectric property such that an electric

! field across the shell will simulate the eef_ct of gravity. More information

on this experiment may be found in Miller and Gall (1983a), Fowlis and Fichtl

1 (1977), and the NASA Contractor Report NAS8-3198 (Hart 1984).

From the report by Hart (1984), it appears that the experiment may not be lsuitable for a study of fluid response to bazoclinic effects. However, tt_e

studies of deep, buoyant convection reamin appropriate for the experiment. ;

I
_ The numerical re_ tq of Miller and Gall (1983a) and Hart (1984) give !

t isome indication o_ rh,- ,ntial problems that may arise when the parameters

I of the experiment are chosen to be representative of large-scale flows. The _

t velocities in the mertdional plane are mostly restricted to boundary layers• t
t

near the walls of the shell. The zonal flow reaches the largest values at t

L

high latitudes, and shows a rather complicated structure. These results raise

: some questions as to the usefulness of the ACCE experiment as a model of i

atmospheric flows. It is also difficult to point to the specific deficiencies
!

that lead to the results.

In addition, Hart examined the axisymnetric states for stability to

quasi-geostrophic disturbances. He concluded that the geometry of the cell
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was not adequate to model flows characterlzcd by suff.ciently small Ekman

number for barocllnic instability studies. Ii

While these studies seem to preclude the use of the GFFC (Geophysical

Fluid Flow Cell) for large-scale baroclivic studies, they at least do suggest

something of the nature of the axlsymmetric flow of the atmosphere. There are

some striking similarities between these results and the results that were

obtained in the dissertation study I completed (Henderson 1982 - designated by

, H). The numerical method used in H was that of a spectral approach, and the

fluid was taken to he compressible. The forcing was chosen to be internal i

heating, and was based upon observational studies of large-scale, atmospheric

heating patterns In spite of these differences, the flow in the meridlonal ! !
¢

plane was very similar to the results of Miller and Gall (1983a). Further- l

more, when the axlsymmetric flow was tested for stability to quasl-geostrophic

!

disturbances, the transition from lower symmetric Hadley to Rossby regimes was _ i
2

found, but no upper symmetric regime could be found• This result is I

]consistent with the speculation presented near the end of the Miller and Gall

(1983a) paper. Since the findings of this study are in agreement with and

extend the results of these other studies (although the modeling techniques

and physical properties of the fluid are different) a description of the _

• results in H will be of interest to those investigators studying large-scale

axisymmet ric flows.

Lorenz (1953) was apparently the first to point out that a heated,t

rotating fluid possesses an axisyumetrlc solution which is capable of

achieving the necessary fluxes of heat and momentum between the appropriate

sources and sinks. For certain ranges of heating and rotation rates, the

axisyumetric solution is unstable to asylmetric disturbances. A circulation

pattern characterized by horizontal waves appears, and the axisysmetrtc

'b
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solution is never observed in laboratory experiments. In order to determine

the values of the heating and rotation parameters that will show the wave Ii

regime for the AGCE experiment, it is thus necessary to calculate the base

states first, and to then test them for szability to asymmetric disturbances.

Miller and Gall (1983b) do perform such a stability test, but for the

cylindrical annulus. A paper describing the results for a sphere has been

promised, but has not been published as of June 1984.

The direction of this study will also be two-fold. In the next section,

a mathematical model of compressible, axisymmetrlc flow will be presented.

The physical basis of the model and some of the assumptions made will be

explained. The last part of the section will show the results for a few

selected cases of steady, axisymmetric flow. The third section will use the

results of the axisymmetric calculations for a stability study. The

axisymp_ric base states will be tested for stability to quasi-geostrophic
!

disturbances. The stability tests are by no means exhaustive - they were made

(at the time) in order to show the practicality of doing both base state and

stability calculations by a spectral approach. Perhaps more suitable

parameters could have been chosen here, but the results demonstrate that the

transition curve to Rossby flows may be found numerically. The final section _

is a discussion of tht results and some of the limitations that were I
• i

encountered. {
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2. Axlsymmetrlc Model

The system of equations developed in this section will model the steady Ii
!

soluti_mq rf_ the atmospheric global convectlo_ problem. The model was

pre=ented by Dutto. (1982) in order to establish mathematical existence and

uniqueness of the Hadley response of the atmosphere to axlsy.netrlc heating

fields and viscosity. The equations will be presented here because of the

different coordinate system used in this study.

The last half of this section is a discussion ef one numerical results

from the model. Figures from two cases are shown, and other cases are
t

compared qualitatively to the presented cases. These results are also

compared to those of other investigators.

a. Axisymmetrlc Model Equations

The meteorological equations ar_ most naturally _=t in spherical !

I
coordinates, but the spherical framework contains terms that are not essential i

to a mathematical model of global convection. Consequently, it was decided i

that a rotating cylindrical system would be simpler and would retain the

necessary terms for a suitable model. Figure 1 shows a thin disk rotating

about a vertical axis. As the disk rotates, it sweeps out the volume of a

"%

sphere. The axlsy_etric motion over a rotating sphere and the motion over

the rotating disk would be slmilar except for the horizontal convergence due

to the converging meridians in the spherical case. The terms that account for

horizontal convergence are generally several orders of magnitude smaller than

the most important terms. Thus a geometry that does not contain such temms

should be able to model the problem of interest here. i
#

problem to be studied is essentially one of convection, it is i
Since the

also possible to linearize the pressure gradient (Boussinesq approximation) by

neglecting small density changes from a known reference state. It is also

%
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Figure I. Model geometry and orientation of axes. The axes are rotatin_ with
the thin disk.

i

i
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appropriate to neglect such small departures in the continuity equation (deep |[
!

convection approximation). In order to maintain energetic consistency, the

first law of thermodynamics is replaced by one governing the evolution of

potential temperature perturbations. The result is a model adequate for the

study of deep, global convection. The five, steady equations are

;)u
v ;)...._.u+ w + 2_ cos0 v - Fx(U) (2..I)a;)8 -_

_v ;)..._v+ w ;)v 1 _ + Fx(V ) (2.2)a ;)e _- 2_ cosO u = -a ;)O

_ __ ;)w _ Fx(W)v ;)w+ w-- = - + gzK _ (2.3)a ;)8 ;)z ;)z

J ,

___ ;)_ w _ F (3)"_ v ;)_+ w-- + -- " + _ (2.4_ )

_ a ;)e ;)z HoK Cpp oToK _r

!

I ;) (PoV) + ;)a ;)e _-_ (Pow) = 0 (2.5)

" where e is co-latltude and v is positive southward, u is the zonal velocity, w

the vertical velocity, a the radius of the earth, R the angular rotation of

• the earth, n the product of the Exner function perturbation and the reference

state potential temperature, Fx( ) is an unspecified for_ of friction, g is

gravity, Pr the Prandtl numbe_' (Pr - v/k), Cp the specific heat of air at

constant pressure, T is temperature, p is density, H8 a scale height of po-

tential temperature (l/H e - I/O _9/_z), z .he vertical direction, and a scaled

i potential temperature perturbation (T O'IKoo where IlK (gH01Pr)ll24 Im I •

il These five equations my be sxnplifted further, because the two-

di_nslon_l continuity equation permlts the definition of a mridlonal stream- I
!

s function. It my be verified by substitution that w - - I/a _/_8 and I

]986002282-]74
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v = I/po ;)(Po$)/_z satisfy the continuity equation. The vortfcity is,

approxlmately, _ " ;)v/_z- I/a 3w/;)0. In terms of the streamfunction, the I"

vortlcl.ty becomes _ = V25 - I/H ;)_/;)z where H Is the scale height for lenslty.

The Laplaclan Is

1 ;)2( ) _-;)2(___.)) (2.6) .
v2()= 2

a ;)0 2 ;)w2

A merldlonal vorticlty equation may now be formed b) differentiating the

merldlonal momentum equation wlth respect to z and subtracting It from the _,

vertical momentum equation differentiated with respect to eo-latltude. The

original five equations are redl :ed to Just three, alon8 with the definitions

of v and w In terms of the 8treamfunctlon. These three equatione are

v _u + w _u "
_--_ _ + 2fl coils v = V_oV " OoVU (2.7) I

_ (gP )l/2 ! + v • ,oV (2.8:v _-r'+ w_--.r'-+ - 2a cos0 az

(v a_ _x Pr)l/2 (gPrHo)l/2 _ + Vao9 • port (2.9)
a _'O + w_-_) Pr + (g H0 w = Cp o To

The form of friction has been specified here. . ;
i'

These equations s'.lll contaln more lnformatlon than is needed to model

the axlsyumetrlc flow. The usual method used to deterulne the Imp_:'tant terms

: of the model is scale analysis. In order to supply estl_tes of the various

terms, 8ores knowledse of the anmeer _s needed. This _pproach has been

successful In deslin8 with quui-Seostrophic flow (and other types), but has

been less muccsssful wlth axlsysmetrlc flows. In light of these problems,

this study first emp2_yod _ut fr'l m:t of three equstlou 2.7 - 2.9. The net

........... .---_.--jme,qN_ - - .. ,_P
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wa_ solved at a truncation level that was quite severe. These results allowed

a comparlson ot the various terms 1.I the three equations, it was found that i

the three nonlinear terms3 in the vortlcity equation were several orders of

magnitude smaller than the remaining terms. This meant that the zonal flow

wa_ nearly in geostrophlc balance, except for the effects of dissipation at

Q

the upper at_d lower boundaries. The results also showed that the inert [onal

transport of temperature in the first law was smaller than the vertical

. transports, in k eping with dart's (1984) estimates. In addition, the

meridional transport of zonal momentum in the first _=entum equation was

generally smaller (by about an ol:der of magnitude than any of the other

i

terms). However, these tw_ _erid_onal transport terms _ere retained in this !

study, as their importance near the bo_ndarie_ could be greater. The final
!

;c r of equations becomes *

" _u

Va _e_-_u+ w _z + 2_ cos8 v -VaoV 0oVU (2.10) I ;
i
l
J

..v_a..!+ w a_) (gPr/Hg)l/2I _O _ �w- q �VaoVport (2.1 _ ,

(gPr/H6)l/2 1 a._x- 2_ cos9 _u ',jsae _-_ " V_oV • OoV_ (2.12)

• It amy be of interest that the reduced set of equations formed by deleting the *i
I
i

smrldional transport terns and the dissipation of vorrteity permits the
r
e

forsmlation of a single equation i. terms of Lhe potential temperature

i !perturbation. This can _ done, provld_.d that the static stability meets i

certain requirens_.ts. Perhaps the resulting equation could be of use in

certain analytic studie_ of sxlsy_m_tric flow.

The distribution of the _raosphertc variables over a avhere corresponds I

! I

to that of even _les. Specifically, variables such u the zonal wind,
&
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temperatures, and £sobaric heights are nearly gymmetrlc about the equator.
R

The merldional wind ccmponent is approximately antlsymtric. In terms of the I#
• varlables used in th1_ st,:dy, consistency is achieved if the zonal wind,

temperature perturbation, and heati._g function are latitudinally symmetric

while the streamfunctlon is latitudinally antisymmetrlc. With these relation-

ships in mind, an inspection of the three equations of tie axisymmetric model

"._
shows that the terms in the zc_al wind equation _nd the first law of thermo-

I
1 dynamics possess even symmetry about the equator, while the meridional

vortlcity equation has antlsymmetry about the equator. The total number of

modes is about half that of the general case.
L

The symmetry conditions for the three variables is as follows

N+I

u ~ _ _ (z) sln(n0) (2.13)n

n odd

N

4" _ _n(Z) sin(nO) (2.14) !
n even _ ,

t

T ~ _ _n(Z) cos(n0) (2.15) _,
n even

It onould be noted that the expansions for u and T (both symmetric about the

equator) differ from each other. This is due to the additionaI Imposed ,_':

boundary conditions at the pole - u m_st vanish at the poles, while T _ _
. i

generally does not. $ must also vanish at the poles - this means that _ ' i

vanishes at all the boundaries along with the first derivative at the upper

and lower boundaries. _ _ '

The variables were expanded in _ series of orthogonal functions that were

lost suitable to reduce the complexity of the di-stpation terms. For example,

the sonal wind _s expanded in terms of the functions that are the solution to

the pt oblem

aoV " OoVU = - _u (2.16)
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The boundary concitlon was taken to be the no-slip condition, that is u = 0 at _=

Wz = O,ZT. This effectively places a lid at the upper surface. The lid allows

an expansion of discrete functions for all thzee variables, but apparently

results in some unrealistic solutions for some parameter val-es_ Some of Lhe

consequences of the lid are discussed later.
6

As a result of solving the eiger_alue problem for u, the following

expansion is obtained

N+I M z/ZT
u = _ _ um sin(ne) sln(_)e (2.17)

n _dd m-i n "T

The vertical modes are simply a sine expansion on a half interval, with the

size of the function increasing upward due to the exponential weighting, i

The potential temperature perturbation is expanded in terms of a similar

equation

aov • po_'r = - X'r (2.18)

But the boundary conditions at the lower and upper surfaces ate different from

the zonal wind case, For the temperatures, the first derivative is taken to

• L_ zero st these surfaces - in effect, an ass_,mption that the boundaries are

insulated. The resulting expansion contain_ t_o parts - one of which

possesses no vertical variation. The expansion is
• i

N m N M m

Z " n_even Tn c°s(ne) + n_even _1 _n ¢°a(n6t(sin(_ ) -,m cos(_)}ez/ZT_T

(2.19)

The _ertlcal eigenfunctions are trigonometric, have the first derivative zero

i"
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at the upper and lower boundaries, and increase upward in size because of the

exponential weighting. IiThe streamf_nction is expanded in terms of the soluticn to the equation

=o v . poV(ao V . poV$ ) = X2, (2.20)

This equation differs from the defining equations for u and _ in that it is

fourth order, &t,L the right ha_:d side contains _2 instead of - X. The latter

condition Is slmp_y taken for convenience.

A fourth order problem requires two additional boundary conditions beyond

the previous seco_:d order problems, However, these additional conditions

follow quite naturally from the no-slip condition used previously. The

I

velocity components are related to the stream function by the equations

v = _#/_z - _IB _ad w = - I/a _$/_0. The condition of no-slip requires that

v = w = 0 at the upper and lower surfaces. It Is seen by inspection that the

conditions _/_z = 0 and _ = 0 fulfill these requirements.
.r

The solul:ion to this type of eigenvalue problem has been presented by

Berris and Reid _1958). The present treatment differs from their problem in

that there Is a _ertical weighting by density here, and a resulting shift in I

the position of the eigenvalues. Hence, the eigenvalues were calculated _

numerically and sLored.

The solution to the problem (called Chandra functions in the engineering

literature) behave like trigonometric functions In that they may be separated

into even and odd parts. These parts will be designed by

cosh(a*m=*) cos(b'ms*)
Ca n _ n

n = cosh(a*:/2) cos(b*:/2) (2.21)

i
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_ and

:_ sinh(_mz * ) slnC_mz*)
n (2.22) -

_ S" - sinh(_!/2) - stn(_:/2)
_.

_" " whe re

, z 1 (- 112 < z* < 1/2) (2.23)
zT 2 -- --

and the scaling factors are

a*_ = (_*>T 2 + n2ZT2/a2 + i) 1/2 (2.24)

b,m ,m 2 n2ZT2/a 2•. (X nZT - - 1) 1/2 (2.25 in

_m = (_:ZT2 + n2ZT2/a2 + 1)1/2 (2.25) _ ia n

_mn" (_ZT 2 - n2_ 2/a2 - 1)1/2 (2.27) I
b

The eigenvalues are denoted by the _'s. These results allow the stream-

" funcClon to be expanded according to

N lq -m_m. Z/ZT

n ever; _=l

where the even and odd coefflcients have been taken to be ;_ and _un

respect tvely.Because these functions are not routineI_" found _n th.: meCe_rological

literature, graphs shoving their behavior against z are presented in _!';i __

-- - o ____._., at:
_----- n mnmvmuumuml_..mn_.m,qm,,_am*_l '" • " "' ' ....
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Figures 2a and 2b. Once again the size of the eigenfunctlons increases wlth

height due to the effects of stratification.

The spectral equations are obtained by substituting the expansions for

each variable into the three equations 2.10 - 2.12. Each equation is

multiplied by a particular elgenfunctlon of the dissipation term, and the

" result is integrated over the meridional domain. The details of the procedure .

are excessive, and will be omitted here. The resulting equations are also

quite lengthy, and therefore have been placed in the Appendix.

The treatment of the heating term is based upon work of Johnson and

_ Dutton - a figure of which may be found on page 407 of Dutton (1976). It was _
%

found that the heating field may be adequately expanded in terms of the
t

potential temperature elgenfunctions. Higher levels of truncation reproduce

the original picture quite closely, but it is the highly truncated ones that

I
were of interest in this study. Figure 3 shows the field that is obtained

I

from a truncation point of m = 1 and n = 2. The heating is found at low

l-vels in the tropics, while the cooling is generally distributed throughout

the polar regions. It is this picture of idealized heating that was used in

the numerical studies that follow.

b. Axlsymmetrlc Results !

Because of the nonlinear nature of the axisymmetrlc model, the task of *

finding steady solutions to the model was attacked numerically. Several

algorithms were tested, but most tmre unable to determine a solution unless

good initial guesses were supplied. An algorithm that was less sensitive to

the initial guess was found in the International Mathematical and Statistical

Library of Subprograms (IHSL). The routine, called ZXSSQ, used the Marquardt-

-] Levenberg technique to minimize the sum of iq_ares for the more general case

of a nonlinear least squares problem. The routine would also seek the

%
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• Figure 2a. Plots of the first two even modes of the vert:cal part of the i
streamfunctlon expansion. The modes are unnormalized. ' I
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Flgure 2b, Plots of the first two odd modes of the vertlcal part of the
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• Figure 3. The spectral expansion of the net heating field at a truncation
• point of rl, n=2. The unite are "C day-I.
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solution of an exactly specified nonlinear system if the tolerance of the

residual sum of _uares were set to a very small number. The routine proved

to be quite satisfactory in practice, Solutions were always found as long as

the parameters of the model were within a factor of five of values normally

associated with the atmosphere, For par.meter values outside this range, tt-

routine would usually not be able to arrive at a solution within a reasonable

amount of time, It was not determined if more time were needed, or an

improved initial guess were required. Since the model was scaled for

conditions noc unlike those observed for the atmosphere, the model solutions

associated _ith extreme parameter values may be of little value. The reader

is referred to the IMSL documentation for fu: ner information and references

regarding the Marquardt-Levenberg technique, i

_I,order to demonstrate the nature of the solutions that were found, i
I
i

figures from two of the cases were selected for discussion. All of the cases

of this study used the idealized heating pattern mentioned earlier, and _ !

conta*ned 23 coefficients at a truncation point of wavenumber 2 in the

vertical and wavenumber 5 in the horizontal. Also, the Prandtl number was set

at a value of 4. i

The first case used the unscaled heating values from the idealized

pattern• This meant that the differential heating between pole and equator • I

was about 1.4°K The viscosity was taken to be 37 m2sec -1, which ,_y be a

little low for the scales under consideration, but _ difficult to specify

more exactly in any case.

The zonal wind speed is found to be about 12 m sec -1 at 50"N and 8 kJn

(Figure 4). There is no indication of any strong boundary layer ef.ects at

any boundary. This is due in part to the restricte_ resolution of the model,

although tests with a truncation point that included one more wave In both the
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Figure 4. Case 2. The zonal wind field from a model vitb 23 coefficients and
parameter values of Pr-4, Q-H, and v-37 m2 sec -I. The contour

Interval is l.O sec -l.
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vertical and the horizontal showed no significant differences from these

pictures. The temperature field, shown in Figure 5, shows the correct elope

for approx4=ate geostrophlc balance. There is a reversal of the g_sdient

above I0 km. A check of the static stability showed values that were =uch

higher than in the observed atmosphere. _hls 'LAybe inferred by inspection,
'L

i since the Isentropes are rather evenly spaced throughout the domain. In the

I atmosphere, the isentropes _re spaced further apart in the troposphere and

packed more closely in the stratosphere.
t

The picture of the merldlon_l streaafunctlen, shown in Figure 6, is most

laterestlng. The pattern is one of a two-cell structure, with the position of

the upper cell being a little closer to the pole. The basic c_ll is a

thermally direct one, but there is some "leakage" of the return flow at middle

levels. The northward flow (Figure 7) reaches a maximum at two levels, with

the flow in the top level moving at 2.5 m sac-1 and in the lower level at

1.5 m sac-I. The return flow also occurred at two levels, with the stronger

flow near the surface. Here the flow reaches 1.5 a s_c-I, uhile in the upper

cell the maximum speed was 1.0 m sec -I. The vertical motion field, shown in

Figure 8, also reflected the two-cell structure. The maxia_ vertical

velocities were about 0.15 ca sec-I. _.

A number of experiments were run with different values of the parameters.

It was found that the most important parameter in determining the me.rldlonal

cell structure was the eddy viscosity. The two-cell structure appeared for

values of v below I00 m2sec -I. For larger values, the merldlonal flow was in . t

the form of • single, direct Hadley cell. An example of the streaafunctlon at

th_ same _araMter values for the preceding exasple, except that the value of

v is taken to be 148 =2sac-l, is shown In Figure 9. It is seen th- the

circulation is one _f _ _lrect cell, c_ntared at 40"N an_ 6 ks. It was also

_ •
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Figure 8. Case 2. The vertical motion field from a model with 23 i
coefficients and parameter values of Pr=4, _=U, and v=37 a 2 sec -1. _
The contour Interval is 0.5 mR sac -1.
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Figure 9. Caae I. The meridlonal streaafunction field froQ a model with 23

coefficients and parameter values of Pr=4, Q'H, and v=148 a2 sec-l.
The contour interval is I000 m2 sec-l.
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found that a reduction in the rotation rate would also favor a single cell.

For a viscosity value of 100 m2sec -1, it was necessary to lower the rotation

rate to 50 percent (and less) of the rotation rate of the earth in order to

produce the single cell.

It a/ght be assumed that the n_ridional circulation was splitting to a

multi-celled structure as the flow became more energetic. Whil_ this study

could not absolutely deny the possibility that an even greater number of cells

might appear, the results of other cases _rlth even lower values of viscosity

suggested that there was actually a simple shift of the center of the Hadley

cell to lower levels of the domain. There was little evidence to suggest that

the flow would proceed to an even higher number of cells as the viscosity was

decreased further.

There were several runs made with different values of the heating

field. All of the runs used the same idealized pattern, but the entire field

was multiplied by a scaling factor to achieve different heating gradients.
p

The results were quite consistent in that the response of the flow was nearly

linear to the heating field. That is, if the heating field were scaled larger

by a factor of two, the zonal wind maximum and the maximum streamfunction "1 -'_

!value also increased by a factor of two. Raising or lowering the heating ,-
t

values did not result in 4mportant changes in the overall patterns of the -

1
dependent variables. 1

There were also two experiments Bade with different choices of

resolutlon. Neither experisent suggested that there would be strong flow in

very narrow boundary layers as the resolution was increased, but then again,

the addition of only 1 or 2 wavenumbers in either the vertical or horizontal

direction may have been inadequate to answer this question. A check of the

energy by wavenumber showed that the spectrum dropped sharply with increasing
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wavenumber - but It was only possible to check this out to wavenumber 8 in the

horizontal. Perhaps a more detailed heating pattern _ould force a more

complicated fluid response.

Also shown is a ease where the various parameters in the model have been

• set to what is believed to be most nearly the proper atmospheric values. The

resolution b.as been Increased by one additional wavenumber in each direction

(for a total of 46 coefficients) and the differential heating has been

Increased by a factor of 2 (for a pole to equator difference of 2.8QK). The

rotation rate is that of the earth. This picture, Figure I0, shows that the

two-cell structure is dominant, with the upper cell displaced toward the pole. _
e

The picture Is quite similar to the results of Miller and Gall (1983a) as

shown in their Figure 5(A). Thls similarity has occurred in spite of

different numerical procedures, large differences in model resolution, ,
!

: I
different heating configurations, and fluid compressibility - to name the more [ ,:

important differences. However, In contrast to the results of Miller and Gall

(1983a), the zonal wind pattern was found to be quite smooth - It is not shown 1

because it differs little from the pattern in Figure 4. The maximum value is i _':_

15 m sec-I and is found at 45°N rather than at 50°N as in Figure 4. !_._i

The axisymmetrlc flow described so far Is interesting in its own rlgh_.

!But the logical next step Is to seek some answers as to the stability of the
L

flow, Specifically, at what parameter values will small asymBetric

' I
• disturbancs begin to grow? i

I
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Figure I0. Case 7. The meridional streaafuuctlon field froa a model with 46
coefficients and paraaeter values of Fr=4, Q=2H, and _=I00 a 2
see -1. The rotation rate has been Increased to that of the earth.
The contour intervaI is 2000 m2 see -I.
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3. Asymmetric_ quasl-,Geostrophtc Model.

The axisymmetric equations cannot be easily extended to three dimension_

for a stabiliLy study. In order to do so, it would be necessary to include

the pressure pertvrhation that was eliminated in the axisymetric formulation.

Also, the simplifications obtained by using a meridional streamfunction in the
J

axisy _etric model cannot be extended to the three dimensional case. So,

instead of studying the full three-dimensional problem, it was decided to

• study the stability of the axlsymmetric flow to quasi-geosrrophlc

disturbances. There is Just one equation governing the evolution of quasi-

geostrophic disturbances, and these disturbances are the most apparent of the

transient synoptic features, i

a. Quasi-Geo_trophic Model Equations

A quasl-geostrophic model may be developed from the orlgilml global model |

#

that was presented in Section 2a. Of course, the time derivative terms must !!

be retained here. The quasi-geostrophic scaling assumptions (Duttou 1976a)

which are used here are: 1) a vertical scale height of about 8 los,

2) horizontal scales of about 1000 km (quarter wavelength), 3) time scale of !

one day (quarter period), 4) Rossby number of about 1/10, and 5) a Richardson

number of about 30. It will be noted here that the friction term will be +

" retained in the model, in spite of the fact that the scaling results would I
t

indicate that its magnitude is small and should be omitted. The term is kept

because it is desired to study the forced disturbances and the friction term
i

is the dissipation mechanisa. If the horizontal velocities are assumed to be

representable through the streamfunction _ then the velocities and vortictty

may b_ wtitten u = 1/a _/ge, v = -9_/ax and _ = (l/a_u/_6 -_v/_x) = VH2_.

The quasi-geoatrophic equation may be expressed
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1 i

t_ 8t8 {VH2* 1 iz*(Po _--_*)}
-- +- -- + 2nslnS _--t= ,

' Po _z a _x

iC 1 _ (0 q) + F,{VI:I2,+ 1 L_(,po__.L,)}
"- _ Po _z* 4P-r PrPo _z _z

r

=i 21

":i where z* = {g/f2 o HB}II2z and the emtertal derivative is defined as
1 • 2
' l

8 _ _ _ _ ''
. _-_{ }= _-E{ } +u_-_-( }+ ( }

(3.2)

= ST{ ) + a($,{ })

The perturbation equation may be gained by following the usual procedure,

where the streaafunctlon is assumed to be composed of a basic state plus a

, disturbance $ = $ + $' where the circumflex denotes the base state and a prime

indicates the disturbance. If this decomposltJon of $ is substituted into the

expression for the quasl-geostrophic potential vorttcity, there results
{
t
J

• = {_._ + _o__, po _ ,_)}+ {VH2$, + I _ (po _.t_.)} (3.3)_z Po _z* 3z* *
!

= _, + I;

The hydrostatic equation has been used to relate the vertical derivative of $

to the reference potential temperature, Pinally, the quasi-geostrophic

equation _ay be separated into one equation governing the growth of the

disturbances

1986002282-197



197 i

_." + ; __C_+ ....
3t 3x a 30 3x a _6 a 3x i

(3.4)

. i 3 &_)}
1 3 (Po q,) + Fx{VH2_ ' + _ Po-- (Po
Po 3z* ¢P-'_" _z* _z*

and another equation for the quast 6eostrophic base state

• ; 1 (% :t
a _0 a Oo 3z* /Pr (3.5)

i 3; 1 _
+ Fx{a_ + _ Po_ (% TM f

This las_" equation is not used to supply the base state in this study;

instead, the results of the axlsyumetric experiments of the previous section

iare substituted. It may be seen in thls laat equation Just _dmt the Important
J
t |

difference in fvr_ is between the axisym_ettic model and the quasi-geostrophic

axisymmetric _del. In the case of the former, it i8 the vertical advection

i.!term_ which are most important, with .he horizontal advection terms playing a t

less important role. The situation is Just the opposite vtth the quasi- _,..,

- geostrophic features. [
I

In order to transform the equation to the spectral form, it is uecessary j

Co first specify the form of the eigenfunctions of the stresafunction. This i
• i

is _atned by solving an eigenvalue problem - in Chls case the most natural one !

Is to require the quasi-geostrophic potential vortlcity to satisfy

VH2 _, + I _ (Po _'') " - _.t' (3.6)

!

i
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The horizontal boundary conditions are taken to be cyclic in the longitudinal

direction, and the condition _t'/_x " 0 at the latitudinal boundaries 0, w/2.

This last condition does not permit any flow by the perturbations through the

lateral boundaries. Thus the domain may be viewed as a channel with lateral

boundaries at 0 and w/2 with the flow patterns repeating every 2_ in the

longitudinal direction.

The specification of the vertical boundary condition is more difficult.

It would be best if the no-slip condi_ion could be specified at toe upper and

lower boundaries, along with the condition of no heat flux. However, the _'

posed eigenvalue problem is of second order, so it is not generally feasible

to fulfill all three conditions slmultaneously. It seemed that the choice

_' -0 at the two surfaces satisfies at least two of the three conditions, i

The perturbation velocities and the vortlcity will be zero, but the condition !

of no heat flux is not satisfied. As a consequence of the heat flux at the

boundaries, a vertlca y zeloclty may occur there, although there is no i'

horizontal motion. It may be found from the first law of thermodynamics, in

the absence of friction and heating, that the vertical velocity at the upper
I

and lower boundaries amy be related to the local rise derivative of the

temperature perturbation by i
t

t.
_' f_.L .1/2
_-+ .prae ) w = 0 (3.7)

As discussed in Dutton (1976b), the upper and lower surfaces are not true llds ',

but may be viewed aa surfaces to adjacent boundary layers.

The eigenvalue problem may be solved by standard mthode, and the

expansion is found to be i

i
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*' = _ _ _ (_z cos( ) +_n_ sin( )) ::
I-0 n=O m-O

_ ._z*. z*/ZT* e

sin(2ne ) slnt-_T,)e _t

• Note that the expansion in the vertical and latitudinal directions Is Just

that of a sine expansion, vhile the longitudinal expansion is a general

trigonometric one.

The expansion for 0' may be differentiated as needed and substituted back |
t

Into the quasi-geostrophlc equation. The base state variables are _ ,

differentiated from their spectral forms given tn section 2.1 and also

substituted Into the equation. The equation Is nov multiplied by a particular i

function of the perturbation streaafunctlon, and integrated over the domain.
|

i
The resulting spectral equations are again quite lengthyD and may be found In ; :

t
the Appendix. _, '

b. Stability Results

It was found by experI_ _tation tha_ the stability of the basic state was ?

strongly dependent upon the magnitude of the eddy viscosity coefficient. The "_ i

magnltude of the viscosity coefficient used to obtain the axlsyumetric results

• iwas In the range lO -150 m2sec -I. When a coefficient In thls range was used

In the Iinearlzed model to test for stability, it was found that the basic

state was stable to all but the most strongly heated cases. Further thought• I
i

suggested the reason for thls result. In the axlsymmetrlc case the eddy

viscosity formulation was being used to paraamterlze the effects of sub-grld

processes, llchardson's york (1926) appears to supply reeeonebl_ estimates of

the eddy viscosity coefficient in this case. But the llneartzed model demands

not a sub-srld l_remeterlsatlon, but an estimate of the ectuel dissipation

1
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mechanisms effecting the pertur'.,attons. The size of the coefficient must be

reduced considerably in order to model Just the dissipation mechanism.

The size of v¢ may be estimated in the manner of Dutton (1982). For

standard atmospheric values of the known variables, the range of _,, ., :-. nd

to be 0.4 - 1,2 m2sec -I. Accordingly, with this uncertainty of '"E, the,va.:e

of 1.0 m2sec -I was selected to be the representative value.

The position of the transition curve between the Hadley and Rossby

rtgimes has been reported from laboratory experiments (Fultz et el., 1959),

/

deduced from a low order model (Lorenz, 1965), and calculated numerically i

(Miller and Gall, 1983) for the annulus. Apparently there have been no 1

sitLlar calculations for the atmosphere although the position of the curve has i

been estimated by C_isler and Fowlis (1979) and Button (1982). The estimate

from Button (1982) shows that the curve is considerably to the Deft of the

results from the annulus experiments, although there is some uncertainty due i

to the high orders of some of the parameters involved. For example, the I

!abscissa of the figures shown by Button are proportional to h4. An error of

two in the estimate here will shift the curve left or right by a factor of 16.

In spite of the uncertainties, there is approximate agreement as to the

position of the curve from the calculations performed here and the estimates. sb

About 20 base states were calculated from an axlsymmetrlc model with a

value of the eddy viscosity set to about 15 m2ssc -1 and Pr - 4. The heating

; rates were varied from Q - 0.SB to Q - 10B (U represents the unsealed heating

;

] field values), and the rotation rates are varied from 0.250 _o 1.5_1. These

l states were then tested for stability to asysmatrl¢, quasi-Seostrophic

disturbances. The results for rotation rates slaller than 0.2_ and heating

rates larger than 10B are probably out of range of the orl|tnal scaling of th@ ;
!

axisysltrtc _odel. Por this mason, the stability results of Figure 11 do
q l

i
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Figure 11. Flow regimes for quui-geoecroph£¢ dis[urbences srout.ng
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calculated flov yes frou • •de1 trlth 23 coefficients,
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(proporcloual ¢o 9 2) while the ordlnace is the Cberual
Iossby number (l an•sure of the hortsonC•l temperature
llradienc ) •

!1 II

1986002282-202



202

not show data points beyond _hese values. In the Figure, the open circles are |

Istable points, while the numbers next to the trlangles Indlc_te the

longitudinal wavenumber of the most rapidly growing asym@etrlc dlsturbance.

The dashed lines indicate, approximately_ the regions dominated by a

particular mode. The Ekman number is given by Ek = --_---- .
2_h 2

There are three points to _ mentioned concerning these results. First,

the agreement between Dutton's estimates and the present calculations is good

provided that the scaled value of d is 450 m. This number seems reasonable as

is the quarter-wavelength of the eddies in the free atmosphere which seem to

be _ost important in the dissipation of energy. Second, the transition curve

appears at a value of the vertical wind shear o. 2 m sec-lka -I -- In
i

agreement with the results of barocllnlc instability studies. Thitu, the

I

dominant wavenumber decreases with decreasing values of Ek-2, in agreement !

i
with the results of Gelsler and Fo_lls. _

The tracsltlon curve represented a true instability boundary from a

steady regime to a wave-llke regime. The elgenvalues of the frequency

occurred in complex pairs. The real part was negative for the stable cases, !

indicating that the disturbances were being damped. But as the heating was "_

increased, the real part approached zero and finally chPnged sign --

indicating an amplification of the disturbances. Since the imaginary part was

nonzero, the amplifying disturbances were also periodic (wave-llke). This

be_uvlot of the eigenvalues signals a Hopf bifurcation. For a point that is

barely u_s_able -- at a value of F.k-2 = 220 In Figure 11 -- the e-folding the

was about 1800 days and had a phase apeed of 3 m sac -1 , The most unstable

point at the same value of Ek"2 had an e-I_Idlng time of 8 days and a phase

speed of 7 • sac"1.
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Further study was made of the growth rates with a different set of !__

axisymmetric model p_ra_etecs. The 3oal here was to seek the axisymmetric

scare which would yield growth rates similar to results published in other

studies.

• Giesle. and Garcia (1977) illustrate the initial growth rates for

disturbances growing in a baroclinlcally unstable, horizontali'.'uniform zonal

flow. The conditions are assumed to be inviscid. Both the Green modes and

•

Charuey modes are present. The calculations were performed for several

combinations of three wind profiles and two temperature profiles. The results

included a description of the amplitudes and phases of the unstable modes, but _
t

it is the growth rates that will be discussva here. _

It was found th_t Charney modes had an initial e-foldlng tlue of 2.5 days
i

and the green modes about 8 days for profiles of wind and temperature that are ,

characteristic of the _id-latitudes in winter. The calculations were repeated t

with the same wind profile and an is .CherL_al temperature distribution in order !_

to assess the effects of increasing static st:ability. The results indicated a i "
I

generally slower rate of growth for all waves. The Charney modes had an

e-foldlng time of 3 days, and the Green modes about ii days. %-I

In order to compare the results of Geisler and Garcia with those of this l
J

study, it was .ecided to c_lculate axisymmetric base qtates for increasing l,

heating rates and co test them _or stability to quasi-geostrophic ' i
J

• disturbances. A model of 4b coefficients was selected (v " 86 m2sec -1) along i !

with a heating pattern that was more representative of the observed pattern.

The Prandtl number was s_t to 4, and the viscosity parameter in the quasi-

geoetrophlc equation was set to zero.

It was found by experiment that the base state had to be very energetic I

in order to achieve growth rates of 2.5 days for the Charney modes. For the _!
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selected value of v = 8b m2sec-I the heating rates had to approach lO°K/day in

the tropics and polar regions -- of coures, lower heating rates would be
t

sufficient if the viscosity coefficient were taken to be smaller.

The axisy_metrlc flow that corresponds to the large heating rate is a

very energetic one, The zonal wind has a maximum value of 70 m sec -1 at 50°N

and 10 km. The Hadley circulation contains a single cell centered at 30°N and

10 km. The meridlonal veloclt_es peak at 26 m sec -I in the upper levels and

reach 13 m sec -I in the return flow at lower levels. The maximum vertical

velocity is 3 cm sec -I at the equator.

Profiles of zonal wind and potential temperature from the model at 50°N _.

are shown in Figcre 12 and 13. For comparison, observed profiles for the _

winter period are shown as dashed lines. The model solution is seen to be !

much stronger, with vertical wind shears beicg 3-4 times larger. The

potential temperature profile is more stable than the observed one. The model J

profile deviates relatively little about the isothermal state up to 8 ka. The _

only region of low static stability is from 8-10 ka, and the value of the

stability in this region is about equal to that observed throughout most of

the troposphere. _.

From the results of quaai-geostrophic theory, it is known that the growth

rates are dependent on both the static stability and the wind shears. The " i

!
dominant term here involves the square of the vertical wind shear divided by

fo2y O

the static stability (~ g _, ,. In the case of the observed profile

the low statlc stability and smaller wind shear yield the calculated growth

rate of ~ 3 days. For the model results, rather high static stabilities need

correspondingly large vertical eind shears to give the sane growth rates.
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4. Discussion

The results of this study showed the practicality of calculating steady,

axisymsetrlc base states and of testing these states for stability to quasi-

geostrophic disturbances by spectral methods. The base states were either one

or two-celled in structure, not the three-celled structure of observed axi-
| .

s_etric flow. Similar base states were calculated by Miller and Gall (1983a)

for a spherical annulus, although the numerical procedures and forcing

; • characteristics were quite different. As suggested by them and found in this

study, the upper lid appears to have a profound effect on the nature of the

flows. This lid seems to be responsible for the splitting of the single Hadley

cell into two cells at sufficiently low viscosity and/or strong forcing.

The nature of the heating may also play a critical role in d_cermining

the nature of the steady flows. In the annulus experiments (and Iodels) the
J

!
forcing is accomplished by maintaining the boundaries at specified

temperatures. The fluid response is to establish narrow, boundary layer Jets

J
_Jacent to the boundaries. The forcing used in this study was of a smoothly

varying field over the interior of the fluid. There was little reason to
f

expect narrow boundary layer Jets to form, and this was basically the case. _

The possible exception was near the lid, where a relatively narrow layer of

po_*ward moving fluid could form if the system were heated strongly enough.

_here is additional evidence that the nature of the steady solutions differ

rather fundamentally between internally forced and externally forced flows.

Higglna (1984) has found from a low order spectral approach that externally

forced flows have sore regions of multiple solutions than do those that are

Internally forced. The complexity of the equations of this study, although

numbering only 23, was sore than sufficient to prevent the search for regions I

Lof multiple solutions.
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The presence of the lid also appears to be the cause of the high static l
; stabilities in the upper levels, This is achieved by trapping the warm, I I

rising fluid under the lid. The result of this is to form a profile that is

statically stable at the top and bottou, but has low stability in the

interior. In fact, as the heating was strengthened, it was found that this

, interior layer became less and less stable, while the fluid at the top and

bottom remained stable.

The axlsy=metric flow was tested for stability to quasl-geostrophlc

disturbances. The do=min for the disturbances differs from that of the

axisym=etri_ flow in that the disturbances are not contained by a true lld.

; This difficulty arises because of the problem of matching the boundary i

conditions between the axisyumetric flow and that of the quasl-geostrophtc ,

disturbances. The use of boundary conditions, chosen to be both slttlar and !
[

convenient, results in horizontal surfaces that are no-slip with respect to i

the horizontal velocity components, but permit vertical velocities. It is !

difficult to assess the effects of this condition on the growing disturbances.

There should, for example, be some reflection of waves from the upper and

lower surfaces, but it would take additional study to determine the relative

size of the effects and their importance on the incipient disturbances, u-

Because this 8tudy was devoted to demonstrating a particular technique in " {

support of the stability studies, there was no study of stony interesting

i aspects of the stability calculations. For exanple, no studies of the ,

_t structure of the aaplifyin8 waves were done such as in Killer and Gall
!

'i (1983b), nor was the stability curve of Figure U calculated for base states

with different parameters other than the chosen set. More complicated heating

patterns could have been tubed, along with somewhat more generous truncation

ltnits to the axisywmetric model, i
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- [The study re-affirmed the fact that the axlsymmetric solutions are not

i quasi-geostrophic in nature. Further, the stability results will differ from
f other studies because the disturbances are growing at the expense of a Hadley

,_. cell thet is statically more stable over most of its domain than the observed

_ axisyumetric flow. The observed flow is presumably the end result of the
a

"{, growing disturbances and presents a less stable environment for the local

growth of later barocllnlc disturbances. Thus the physical interpretation of
i

/

" the present study differs from those based upon observed profiles for the base !

state.

?

}
,!

t

I i

I

" i
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APPENDIX

The spectral equations of the axisymmetric model and the quasi-

geostrophlc disturbances are given below. Hore detall as to their derivation

may be found in Henderson (1982). First we consider the sxlsy_etrlc model.

i The three partlal dlfferentlal equations (zonal momentum, merldioual

:, vorticity, and thermodynamic equations) become five spectral equations. This

is because the even and odd modes of the merldlonal vorticlty equation are

aost conveniently written separately, an_ the therlodynaaic equation may be

: written as two equations gove_nlng the modes possessing vertlcaI variation4

4 and the barotropJc modes. The zonal 1oaentum equation is
I

u+t
a-I r odd s=1 i

J

+ u s ; m (rlvNclmVS+u_sNClUV+(r+u)Nc2aVS) Ir u-r u-r u-r u-r

i
tf

-- u_ ; " NvS maY mrsr_u (r wvNCI r_u+uw sNCl r_u+( r+u)NC2 r_ u) k.

+ uS; t_r(rwvltSltVS NSlmlV+'r-u)NS2u_:)r u+r "uls u+r t

+ us ; • (rwvNSlaVS+uwsNSlmV+(r+u)NS2 mvs)r u-r u-r u-r u-r

t
t

s
-U r ; " (rlvNSl_ll+uwsNSlUr_V+(r+u)Ns2_V:r--u u - i '
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M J
*m 9ha vm _m v-m +wm

+ na _ {#u+l(lu+l+Ju+l)+Ou+l(Ku+]Lu+I)
m=l

*m - Vim _vm .,,m ..vm vm
- _l_u(Ii_u+Jl_u ) _l_ut_,l_u+ILl_u) }

,.

2 2 2

t

The two thermodynamSc equations are I

1

M R S i

Pr [ [ [ (I+_2s2)u{T: _r-u*mjSmr_u+rS'mr_r_uLsmr-u '
m-I r even s-I

S ; I .SU S"ta .8m _,_j" *r r+uJ r+u-T r#r+uLr+u "-1

1
" t

8" I .SU S_ ms Sl

- Tr0u-rJu-r-Tr 0 u-r Lu-r}
Q

41tO Pl

u2 o _}

" aZT(1 - e-2)(q° - 7 _u ) " 0 (A.2) %'
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'.I H R

Pr _ £ r,l+ 2v2.. o*m jvm 1.x?.m LVm)tZrOLr_r u+r rOu+r u+r
m,,1 ;.-'even [

|

o *m vm o -, _vm
- T ,.__ J.-r "_ ? .-r L.__

+ o *m VlZ o m Lvm }'r *r-uJr-u +Tr _ r-u r-u

H R S 'i

- Pr _ _. _ {x: ; " (rws(l+12v2)SCl= !u+r im=l r even s=l ,-

- u,v(Z+w2s 2)NClu_-(r (l+12v2)-u(l+12s2))Nc2mVS)trt-z i
i

!

l I

; _ _ s_* m (rws(l+ 2v2)NCI uv +uwv(l+12s2)Nclmvl !I
r- u-r u-r u-r

i i

t
l

; -(r(l+w2v2)+u(l+w2s2))NC2ul__;) I "i,.j -- t.

• * m (rws(l+s2v2)NClmV+uwv(l+2s2)NclmVa
+ X r _ r--u r-u r-u

1

- (r(l+_2v2)+u(l+_2s2))NC2rmV_t_s)

l
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- (r (1+_ 2v2)-u(l+l 2s2))NS2u_:)

s _ m (r.s(l+ 2v2)NSlmSv+uwv(l+w2s2)NSlmvs- Tr u-r u-r u-r

• _ (r ( l+12v2)+u (1+_ 2a 2) )NS2umv:)

. + xrS _ mr_u(r_s(l+w2v2)NslUv+uxv(l+_2s2)NslmVSr-ur-u

- (r(l+_2v2)+u(l+12s2))NS2__:)}

2¢a_. "- [ _'-,_;"(C-C)4"c,._-C))
/He m-I u u )

!

2 22

aZT(1+ 2v2)q:+VaZT (1_ 2v2) (_. _'- 1 )v.
- + I v +_ xu 0 (A.3) -

zT i '
'l_," '

The two merIdlonal vortlcity equations are

! .
o

H
. m __Hi l . arc oBV

_a [ tUu+l',uu_l-ul..ut- (Ju +lu )
m.'l i

- i

In o ZTtrru u " I-I 4_0 uZTxu ")u-'tu ;

- 2vat utt u_ t u;} " 0 (A.4)
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° f

/H e m-I /H e

i

(X.5) _

f

Tha perturbation form of _.he quasi-geostrophlc equst£on8 may also be _

split into even and odd modes. The equation governlng the even modes 18
I

!
uvw uvw), + 8

(- w - v , ,Vuvw _ tunv
_uvw n-O aLx_uv w

R+I S N L ,. ,

_ _- _. _ f .,.on {>. i_'odd.-Z m_OL_O% _'m,_ _,.¢ . i

-i2
_ -8 ,.
e2) rrvnNvl_w_(Ur)o _unl

Q Q

II S Ig L ].6n _.....6._._.
+ [ _ _ _ ' "" "" " "¢_'" " _z'tv

L _ _ Vr_ o &w r .

r even s=O n-O t=O _a ZT _u_v
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_t

"s s£w

f + w_NCI sw_ + 2NC2 sLw + (gr)o(i_NSlr + w_NSlSW_ + 2NS2Slw))

l R S N L

' r _. _. _. 16ru/Tr { 2 ., ,(2 2

- __Lo ". - _r

2. L _ rvu romlv
r ev.n .-0 " LxZTXuw

R S N L . _-- ,.

_. v. _ _. 32! :_se'Pr F NV2 ,_s) -.
+ 2. L^ L _-0 '," , .... rvn £ws_r °V_ni i

i

8e wc 2w ./2 ZT Oo , i
"_ I I I o-GT¢o,(.x ),,.(a.e) ,::

_ . !
!
t
I

s/z,r

, sin )e _o ;I;* (Ooq')ds de dx* (A.6) l

while chac of [he odd modesJam

s

!

[

I I
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u_, uvw)- _ I' (- _ - 'J 'u_, }_ 8 _ r 1_ ;u,a,,'
;,uvw n"O a Lx _vvw

11+1 $ S L ,

+ _ _ _ _ 16.* (;'unt
r odd s'O n-1 t=O Lx ZT _uvw

2 •

_ r }try n SVltw,(_*r)otu. t

R S N L 16n _untArv_unt..,, ...... etw i

r even s,,O n=O t-O wa ZT X.v_ i

E r

Z

l s . L z6_;_" { z -*(" _ 2 ..:
,---_

eve..-I _-o • Lx zT xuw L.,
t -:

'i
. !

+ _'_-)) rrvu _ltv, (_:)otu.._.
8 !

t *

t.... _-o . _ zT x_v
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R S N L -- ,

- _. y. _ y. 32,rus/Pr * -s
r even s=0 n-0 t=0 a Lx ZT ZT*Xuw l'rvn NV2tws(Xr)o_unt

8e-it 21 _/2 ZT Po

" 2 _r/p--/-• f I f p-_ si_c_*)sin<2_o))'uvw o o o
p

z/Z_
wlz 1LI _ dx*

- lin(z--_-)e (poq')dz de (A.7)Oo _z*

There are several factocs which arise from the integrations. These are

given below in their integral form; _et can be expressed In a closed form :_

which say be found in Henderson (1982).

Iit •

ZT e2Z/ZT_" "_ So'>o°o,c_@ <,. o,._> !_n -T n i

i '.

; n "_ fo Oo sin( ) Cmn ds (A.9)

ZT e2S/ZT t• Kvmn "- fO 130C°S(_:_VZ)_TSin dz (A. IO) "i

' Lvm 1 ZT (_ e2S/ZTn " g So PO sin ) smn ds (A.iI)

J

i ii iii I
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z./Z T
. I_._ ZT Cm e dz (A.12)
_[o Po n

I

Nm = X__ ZT Z/ZT

n ZT [o Oo Smen dz (A.13)

Tmy zT _c: ac:
n " _o _z _z dz (A.14)

zT aS: _S: " ;
N_nv " fo _z _z dz (A.15) _'#

t

/zzeZ/ZTI ca cos(_vz) _s--
SclmVS g o n _--T= sln(_--j dz (A. 16)

(

Nc2mVSn" ._.fl ZT eZ/ZT Cmnsin(_ "F') sxn_",weZ,Z__;dz (A, 17) _ ,o |
I

ZT Sm cos( ) sin( ) dz (A.18)
NSI vs = _. j- no -T '

i '
ZT Sm sin ) 81n ) dz (A.19) _ _ "_

Ns2nvs'= _ f n -'n o

!
= f,_12sin(re) sln(2ve) cos(2n6) de (A.20)Arvn "0

rrvn = [:/2 sin(re) sin(2ve) s£n(2ne) de (A.21) _'
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NVl_ws " -[ e LT

ZT Z/ZT _ .w_z_ ,s_z_

NV2tws f e sln(_) sxnt-_T, cos
= __"_--_ dz (A_2_)

JO _c

ZT 2z/Z T• ,_c%'). So,><,_:_, <',

2z/Z T

: ZT Sm e dz. _,(s) " .l'o "o s" ,,
y
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1, Introduction

!
Cloud s_reets in the atmosphere generally are believed to occur as a

result of a combination of two dynamic and one thermodynamic mechanisms

(Kelly, 1977; Brown, 1980). The fSrst dynamic mechanism is an Irrotational

" one by which secondary circulations may grow via extraction of energy from the

component of the large-scale wind perpendicular to the roll axis; because thls
!

can occur only when an Inflectlon point exists In the wind profile, this

Instability Is called the inflection point Instability (Brown, 1972; Etling s

and Wippermann, 1975). The second dynamic mechanism Is a combination of a

rotational and a viscous one by which roll circulations may develop via

extraction of energy from the component of the large-scale wind parallel to
_r

, the roll axis, and so thls Instability is called the parallel instability '

'•I (Lilly, 1966). Most investigators believe that this latter dynamic mechanism, _jl
i which requires rotational and viscous terms of the same order of magnitude, is

"i of secondary importance (Brown, 1980), although there are some who believe It _
.!
A

-_ may be significant (e.g. Etllng, 1971; Gammelsr_d, 1975). The thermal _

,; mechanism is manifested by convective perturbations extracting energy from the "
.I

_ basic state thermal structure, and this instability Is labelled the

i Raylelgh-B_nard tnstabillty (Asal, 1970; Kuettner, 1971). Latent heating
I - i

effects can be Incorporated Into the thermal Instability, resulting in a i

modified form for the governing dimensionless parameter, the Rayleigh number
l

(Krlshnasurtl, 1975; Mitchell and Agee, 1977; Shlrer and Dutton, 1979). In " i '

the absence of rotational effects, the wind shear perpendicular to the roll 1

provides a stabillztng effect (Ogura and ¥aglhashl, 1969; Kuettner, 1971;

Asal, 1972), and as a result of this, the convective rolls have alignments for

: which the influence of the perpendicular shear is ainlmized (Shlrer, 1980). ",

I.' I
Jk_ ,, ,t.
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Although three mechanisms for roll development have been ldentified, they
|

do not lead necessarily to three independent roll solutions once the effects l_

of wind and stratification are included in a single analysis. [ndeed, in a

, preliminary study of moist, three-dlmenslonal shallow convection, Shlrer

(1982) presented evidence that the parallel and Raylelgh-B_nard instabilities
5

• are actually special cases of a single instability mechanism. But his model

was not sufficiently general, primarily because it could not support nonlinear

roll solutions for the case of pure parallel instability, which is given
!

physically by neutral stratification and mathematically by the vanishing of $
i

the modified Rayleigh number. In addition, the latent heating effects were

not included correctly, and this led to Incorrect braE_ching results. In this

article, we present a larger three-dimenslonal truncated spectral model of

t
shallow convection in order to eliminate the above deficiencies. We will find

that the results on expected roll geometry that are given In Shirer (1982)

are correct; but they are incomplete beta,tee more roll modes than he found are
!

possible In a weakly stably stratified atmosphere.

i

The present model is a generalized version of the one presented tn Shirer

(1980), in which only two-dimensional convection was discussed. In that

study, an arbitrary background helght-dependent horizontal wind was includeJ, -"
;

although no rotational effects were, and so the ambient wind shear was not an [

B

!
energy source for the secondary flow. Latent heating was assumed to occur

i

everywhere In the upward branch of the _irculation, and so all upward motion !
.

was assumed to be moist adiabatic, 411 downward motion, dry adidbatic. In

addition, eddy dissipation ter_s were Included to represent energy loss to

smaller scales. Several J;mprovements have been made in the formulation of the

model discussed here. Three-dimensional convective flow Is assumed and

rotational effects are included; moreover, a cloud base at a prescribed level

L
j II ii.• m
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Zl It_ the middle of the domain is possible, in which case only the upward

•ov_ng air dbove the lev._! zi Is assumed to be cooling moist adlabatlcally.

As w,a'_found i_ the preliminary version (Shirer, 1982), the form of the

nonlinear convective flow is two-dlmenslonal when the Fourier coefficients of

the wind shear profile are nonzero, so that roll solutions develop first. The

model can represent the parallel instability mechanism, because branching

solutions occur in the neutral limit of vanishing modified Eaylelgh number

when both the Cot£olls parameter and the Fourier coefficient of the

roll-parallel shear component are nonzero. Apparently the inflection point

instability mechanism is filtered by the restriction to wave number 1 Fourier

components of the background wind field; additional har_,_.nicswould be needed

in order to capture the inflection point in the wind profile, and hence the

instabillty mechanism. As in th_ preliminary model, late1",theating does not

affect either the roll geometry or the existence of convective Instabillty,

#

but serves primarily to reduce the necessary critical value of the

environmental lapse rate. Physically, this reduction corresponds to that

given by the slice method (Bjerknes, 1938), which is a modified version of the

conditional convective instability criterion for parcel motion; moreover, this ,

reduction is proportional to the cross-sectlonal area of the cloudy region in

which latent heating is occurring.

O? primary concern in this article is a discussion of Chose results from

the model that may be compared with observations such u those taken during

the Fall 1981 convection and turbulence experiment KonTur (Br_smer and Grant,

1985). The simplest comparisons can be rode between the modeUed and observed

allgnmnts of the cloud bands, given here by the angle 0 between the roll axis

end usts end the horizontal wavelength L of the bands, given by the upect

ratio & - 2ST/L a_d by the domain, or circulation, height zT. Expected

1986002282-227



!

227

values of these parameters are obtained from an analysis of the linear

of the conductlve solution from which the nonlinear flow develops, il
stability

In many studies (e.g. Lilly, 1966; Brown, 1970, 1972; Asal and NakasuJl,

1973), the llnearlzed partlal differential equations can be reduced either to

a slngle high-order ordinary differential equation in the amplitude of one of

• the dependent variables, or to a system of ordinary differential equations in

all of the amplitudes. The resulting system is solved nukerically, often by

usJng finite differences to represent vertical derivatives, and then the

expected values of e and L are those associated with perturbations having the

fastest exponential growth rates. Thus, the temporal behavior in the vicinity

of an unstable solution is assumed to orovlde Information on the resulting
J

stable nonlinear solution. A serious shortcoming of this approach, though, Is

that It is strictly valid only for sllghtly 8upercrltlcal cases, but it Is i
f

often applied to a wide range of supercrltlcal parameter values. When the !
I

numerlcal results are interpreted, a standard assumption is that dlfferent

ranges of e and L are characteristic of solutions originating from different

physical instability mechanisms; however, the possibility exists either that '

only one response _tght be allowed or that a vlde variety of responses might !

be created by the combination of two or more instability mechanisms. To aid i_

. in determln_ng _,Ich possibility occurs, a more direct method of analysis than I

that outlined above is needed. {

Such a method Is provided by an alternate approach to the problem that is
e

aqulvalent in many respects to the above point of view. In this second

approach the critical value P-c of an external parameter such as the RaylelKh

number P.8 or the Reynolds nuuber Re Is determined; at the critical value, the

trivial, or conductive, aolutlon is neutrally stable and nonllnear convective

solutions eunate, or bifurcate, frou the trivial solution at this critical

p,
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value ([ooss and Joseph, 1980). When the solution branches toward larger

values of R, w_ find the is!towing: Vor values of R<R c, _rturbations damp, I

and for values of R>Rc, _rturbatlons grow toward the stable nonllnea_

convective solution. But the values of g c depend on the r_gnttudes of such

auxlllar7 parameters as 0 and L, and eo the preferred values of 0 an_ L are

those that produce the _nlmum values of Rc; physically this corresponds to a

release of the instability and a vertical transport of heat via a convective

configuration that can most easily accomplish that task. Moreover,

bifurcation theory ensures that each such _nimum value of Rc is usociated

with a nonlinear branchlng solution and hence a possible roll mode. When

truncated spectral models are used rather than Inflnlte-dlmenslonal partial I

differential _uations, then the functional dependence of Rc on the other i

, parameters of the problem can _ determined via examination of eLthe_ an "

: explicit expression for _ or from the real roots of an explicit _lynomial _

":: governing Re, In addition, the amplitudes of the nonlinear roll solutions i !

can _ given expllcltly, and they usually correspond to cloud bands havlng the

same spacing L that was given by the _nlmLzatlon procedure (Shirer, 1980). |

Thus, a more thorough knowledge of the dependence of the expected roll

geometry on such additlonal parameters u the Corloll8 _rameter f or the

Prandtl number P can _ obtained _rom such an analytical analysis than that
|

possible from 8 purely _mertcal one.

A mJor drawback of the low-order spectral approach 18 the severe •

truncation to 8 very few horizontal and _rtlcal vavanuabers. In the model

presented here, oaly a portion of the background wind shear is considered in

the dyna-/c forclnl_that portion having the u_e vertical vsvenumber _ _hat

of the convective cell. But this can boa serlous disadvantage in some cases.

_or @z4mple, at lust two _rtlcal wavaoumbersumuldba needed in order to

t.
,....... ..-.
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'. capture even some of the in_orm•tion concernlng the existence or location of

• an inflection point in the wind profile. As a consequence, the nonll _r i
]

response to the inflectlon point instability cannot be studied, although such

• filter has the advantage of allowing • direct study of only the parallel

modes. Thus the present analysis is only one step in a series of studies in

. which more information is added gradually until eventually the essential

information in tne large-st•l- forcing can b_ separated from the Ine_seetl•l.
t

In the problem examined here, • crucial observation is that the criclcal
m •

parametsr values of Rc are nonlinear functions of the other parameters. By "i

i 'interpreting physically the minimum value of Rc to be the _cceptable one, we

i

must perform an extremum •n•lysls on this nonlinear func-lon. This type of i'

analysis le•ds to consideration of a ncnlihaar polynomial in the auxillary !

. parametsrs, and •s a cousequencs the linear problem becomes • nonllnear one. i"

t Surprisingly, because it is one involving such qualitative i_fornmtion as the _i

, number of real roots to the polynomial describing the minima of Rc, we are led•

i n•turally to ask the same type of topological questions concerning the form of _:

i the expected critical value of the bifurcation poir,t that were discussed _n
•

Shirar and Wells (1983) about the form of the branching nonlinear solution

itself. In the present analysis, if multiple solutions to the minimizing

polynomial •r_ possib_e, then we must ask whether all classes of transitions
6

from one pzeferrad mode to anothar arm able to occur. If some tra_sltions are

not allowed, then in some sensa the _del is too rastrictad and ,e_ crucial

" dagr•as of fraedom are missi_ql. With tha tachnlque devalopad in Shlrtr and

I

Mails (1983), the hate•mary dsgr•as of freedom could be added and the

rasultin| par•mists associated with crucial physical effects, lbssults of

this type are not possible from numerical _nalysea of the pvernins linearised

'ms

I

|,| _.l , E
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partial differential equatlons because explicit polynomials controlling the _

Ibranching behavior are not determined.

In the preseqt model, we find that only one minimum value for Rc exists

when the atmosphere is stratified neutrally or unstably. For an Ekman profile

in a neutral atmosphere, the preferred orientations rnd aspect ratios depend

i strongly o. the Ekman depth, which we can conslder explicitly here because we

do not use it as a scaling parameter. For Ekmsn depth D = ZT/(2w) , we find an

J orientation angle O ~ -18 ° with respect to the geostrophlc wind vector and a

dimensionless wavelength L/D ~ 18. These values agree fairly well with those

reported by Lilly (1966), Faller and Kaylor (1966), and others for the

parallel mode. A depth of ZT/(l.3_) produces O ~ 4" and L/D ~ 13 in excellent

agreement with Faller and Kaylor (1967). Moreover, when D = ZT/W , we find

that 8 ~ 18" and L/D ~ II, which ar_ values normally attributed to the i
!

inflection point mode (Brown, 1972; Asai and NakasuJl, 1973). These _ I
! L

dependencies on the Ek_an depth do not seem to be addressed in the literature !_ i

and indicate that the usual convention of using P as a scaling parameter might

mask some interesting behavior. In both of the above cases, the horizontal j

wavelengths L are of the order of 4.5 km when the circulation depth zT is I

km; ratios L/zT of this _agnltude are larger than those often cited for the - i
inflection point and thermal modes (Brown, 1980), but have been observed to i

i

i characterize some cloud streets by Walter (1980), Walter and Overland (1984).J
i

and Kelly (1982, 1984).

i The above results apply to parallel modes that extract energy from a

! cosine mode of the back_:ound wind profile, and the values of 8 and L seem

to agree _rLth previous ones when D/z T ~ I/3 - 1/5. But Ekman depths for

actual cloud streets can be in the range _r/2-zT (Br_.mer and Grant, 1985) for

which the cosine parallel modes have unrealistic orientations. Here we
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briefly consider the parallel modes originating from a sine mode of the

I,
background wind and we find that these roll cirealatlons are oriented in the

range Z 20° when D ~ ZT/2 or larger. These calculations are intriguing and

suggest that the cosine parallel modes characterize boundary layers having

small Ekman depths, while the sine parallel modes characterize boundary layers

" having larger Ekman depths. Further work is needed to substantiate chess

conclusions.

When the stratification is stable as many ms five local minima for Rc

exist and the branching rolls derive their energy from the shear in the mean

wind. The resulting roll geometries divide into two types. The first type is

characterized by aspect ratios that are much less than 1 (or L >> 2ZT) ,

corresponding to rolls that are relatively widely spaced, and by orientation

angles for which the Fourier coefficient of the roll-perpendicular shear is I
!

nearly zero; tnls roll derives 81gnlflcant energy from the roll-parallel wind

shear. Sommeria and LeMone (1978) and Walter and Overland (1984) present ' i

>

evidence of such widely spaced rolls, which have width to height ratios of

15-30. The second type involves aspect ratios of order 1 (or L ~ 2ZT),

corresponding to rolls that are about half as deep as they are wide, and by

orientation angles for which both Fourier coefficients of the shear are

. non-zero; this roll derives significant energy from both components of wind 1_

shear. Two orientations are possible for these second modes, and they are

30"-50 ° on elrher side of the orientation for a roll developing in a neutrally ,i

. I

stratified atmosphere. Of note is that when the Ekman depth D = ZT/(2w) , then

these second modes would have orientations near +15 ° and dimensionless

wavelengths L/D near 12. These are the orientations normally associated with

inflection point instability and so there ts the possibility that these second i

modes are related to the inflection point modes. Of course, for this

,_ • mmRn _ I
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!s

hypothesis to be verified, w _ouid need to examine a model containing enough _i

additional wavenumbers to represent explicitly the inflection point modes

themselves. An alternative possibility is that these modes are the ones found

by Kaylor and Failer (1972) in a stable rotating Ekman layer. They associated
o

these modes with propagating internal gravity waves; moreover, they found that

these modes extracted energy from the background wind field via the same

mechanism as that responsible for the parallel instability modes.

Thus, we find that for a wide range of Reynolds numbers, or wind speeds at

the top of the domain, the aspect ratios of both classes are within those

typically reported when that particular class is associated with the global
)

minimum value of Rc (see LeMone, 1973, and Kelly, 1984 for recent summaries),

¢

Although the above variations in orientation angles are large, some

investigators have reported observed alignments in the range _ 25° from the i

wind direction (Plank, 1966; Weston, 1980). With increasing elnd speed atmean l

the top of the domain, different local minima become the global minimum, !

4

leading to discontinuous jumps in the preferred orientations and aspect ratios _

of the rolls. This may be interpreted as a change of mode within the

parallel/thermal instability regime; more complicated behavior might be

expected when enough degrees of freedom are included to allow modeling of the

inflection point instability. In addition, we find that rolls may develop for

all ranges of lapse rates owing to the combined parallel/thermal instability
m

mechanism. But this is not a contradiction of the results of previous

investigators (e.g. Brown, 1972; Wfppermann e_ta__l., 1978) who showed that rolls

could not develop in a sufficiently stable atmosphere. The values of both the 0

Raylelgh number and the Reynolds number must exceed their respective crltlcsl
i

values for rolls to develop, and this is equivalent to requiring that the value )

.. ......... .... .... -,
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of a Richardson number must not be too large. In this sense, then, rolls may

exist only in either a weakly stable or an unstable thermal stratification. |

We conclude that the problem of expected :oli geometry is a 8urprlslngly

complicated nonlinear one that must be studied carefully. Because analyses of

truncated spectral models lead to speclftc polynomials controlling the

critical values of the exte[nal parameters and their extrema, these models are

the natural ones to use for identification of all possible observable modes.

" Moreover, with recently developed techniques from nonlinear mathematics

(Shlrer and Wells, 1983), we can identify the crucial physical effects

governing transitions from one class of modes to another. In this article, we

present an analysis of a low-order model able to represent secondary

circulations arising from a combination of the parallel and thermal

instability mechanisms; we illustrate the results with an Ekman profile, and i

I
show how they depend on the Ekman depth. Application of the results to three

cases from KonTur is presented in Shlrer e__tal. (1985). _. ;

2. Development of the model i

We study here three-dlmenslonal moist shallow Bousslnesq convection i

arlslng in a rotating fluid that is forced both thermally and dynamically.

. Consequently, we consider the secondary flow to be a perturbation superimposed

on a hydrostatic, stratified, moving reference state given by

v.(z) - u(z) i + v(z) j (2.1)

To(Z) = Too - _e z (2.2) i

Po (z) = Poo - Poo g z (2.3)

Po(z) " Poo (2.4)

" _4 : |
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i

in which the unit vectors are directed eastward and northward and Too, Poo,

and the environmental lapse rate Ye are constants. The basic current [i
Poo,

VH(z) Is of larger temporal and spatial scales than the convective flow and so

Is not constrained to be a solution to the Bousslnesq equations. Moreover,

we assume that the basic state Is time-independent and so Investlgate only the

means by which mean wind shear and thermal stratlflcation affect the initial

development of the convectlve motion.

o

The domain is illustrated In Fig. 2.1 In which the cloudy areas are

indicated by hatching. The domain is 2_-perlodlc in the x- and y-dlrectlons,

but is bounded in the vertical by the ground and the inversion height ZT; for

simplicity we assume these to be free upper and lower boundaries on which the

vertical motion and temperature perturbations vanish• The c_oudy areas are

modeled by assuming that only the upward moving component of the flow above

cloud base zI is moist adlaba_Ic, with all other parts of the flow being dry _

t ,
adiabatic. In this way, the effects of water and its phase changes are

represented Implicitly. This Is a refinement of the assumption used

previously in Shirer and Dutton (1979) and Shirer (1980), in which all upward _

i motion was Ioist adiabatic. The present approximation corresponds to the

slice method stability criterion introduced by BJerknes (1938). i

" iUpon writing the dependent variables as

i,

v(x,y,z,t) VH(Z) + v'(x,y,s,t) (2.5) i

IT(x,y,z,t) " To(Z) + T'(x,y,z,t) (2.6)

t
p(x,y,s,t) " po(Z) + p'(x,y,z,t) (2.7)

i

O(x.y,s,t) " Oo(Z) + P'(x,y,z,t) (2.8)

J
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we may write the shallow Boussinesq system as

av' _VH
" " t -!Vp,

+ y'.Vv' + VH.Vy' + w' _z + 2_xv + 0oo

- g T'T -I _ - vV2 , . 0 (2.9)
OO o

i _T'. y,•_ �"_T'+ VH'VT' + w'(Yd-¥ e) + w_(Ym-Yd)6 - KV2T ' " 0 (2.10)

V.y' " 0 (2.11)
I

i

in which K is the (constant) eddy thermometric conductivity, v is the

(constant) eddy viscosity, Ye is the (-.onstant) environmental lapse rate, Yd

i is the dry adiabatic lapse rate, Yu is the (constant) moist adiabatic large

rate, and R is the angular velocity of the earth. For the latent heaclng

" term w+'(Ym-Yd)6, we define

i

if w > 0 (2.12)
w+" if w<O

L.

1 if z1 S z _ zT (2.13)

. 6 = Oil O<z<z
-i -- 1

in which z I is cloud base. We note that because the horizontal and vertical

veloclty components are of the sam order, _ have Included both the

4
horizontal and vertical components • = 2_cos@ and f = 2_in) of the Coriolls

force in (2.9). Also, _ note that a solution to (2.9)-(2.11) is one for

which all perturbations vanish, and this solutlon will be referred to as the

................ "4k,_"
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conductive, or trivial, one. Nonvanishing perturbations will correspond to

the roll solution, r

2.1. Dimensionless forms

c,

For convenience we cast the system (2.9)-(2.11) in dimensionless form.

The horizontal wavelengths of the periodic flow are Lx and Ly respectively,
m

and they provide the appropriate horizontal length scales. The inversion

height zT is used to define the vertical scale, but this corresponds to only a

• half wavelength (Fig. 2.1). Consequently we define

x x* Lx/(2_) (2.14) ;

y = y* Ly/(2w) (2.15)

z " z* ZT/W (2.16) i
!

;

We did not use an Ekman depth D in (2.14)-(2.16) because we are developing a i

T

model having more applications than to only ac Ekman profile. We show in '

Section 3.2.1 that varlaticns in D can produce some large changes in the

preferred orientations and wavelengths of the rolls.

In order for the systems to hs,-e as limlts the two-diamnsional cases Lx+"

and Ly+', we use the horizontal wavelength

• I
LH = (Lx -2 + Ly-2) -112 (_.17) i

in the following definitions
e

t = t* zT LH/(2w2<) (2.18)

u' = u* KW/zT (2.19)

v' = v* <w/s T (2.20)
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w' " w* 2W_/L H (2.21)

U " U* _"/z T (2.22)

V - V* _w/aT (2.23)

T' -1"* v_ Too _3/(g zT3) (2.26)

p, = p* Poo _2w2/ZT2 (2.25)

We have chosen the length scales in (2.19)-(2.23) merely for convenience. The i

dlaenslonless systems will have a simpler form with the above choice than It !-

_ould If u and v had been sc_led by LH and w by zT. ._

With the additional definitions of the aspect ratios

i

- 2 zT/Lx (2.26) _'

J

b ,,, L_/Ly (2.27) ¢ ;

2 1/2 t
A = 2 zT/L H ,, a (1 + b ) (2.28) : +

1 .i
t :

the Kayletgh number _ ,_

K = 8 ZT4 ('re- "fd)/(w: X'oow4) (2.29) I

• 1
the latent heating parameter

I[ - g t¢4 (Yd - Ya)/(VCroo s4) (2.30) ':
I

the rotating Reynolds n_mbers, or dlmnelonless Coriolls terse,

e* = • _r2/(w 2) (2.31)

I
!

fe = f t,Tl/(w2) (2.32) {
!

S'
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the Prandtl number
i

. p . v/_ (2.33) I_

' and the gradient and Laplaclan operators

: V - _ (1 + b2) -1/2 _ + J b (1 + b2) -1/2 _ + k _ (2.34)

C

; _2 2 _2 a2 b2 32 32= a ---- + _+_ (2.35)
_x,2 _y,2 az,2

t

we my rewrite (2.9)-(2.11) in the dimensionless forms

m

_._Z'+_*-_u*+ y_._,*+ ._u*___ _.p,-1v* �e*P.*
_t* az* (2.36) '

1

+ (l+b2) -1/2 M- p&-l_2u* = 0 [
ax*

I

_t* " _z* (2.37)

k

+ b(l+b2) -1/2 _P* - PA-1 V2v* ," 0 -

• _y* t
i
t

_w* ,.,._ , A-2 a_
+ v*'Vw* + v.H -w - e*Pk-2 u* +

at az* _

(2.38)
- pA'2T *- PA-1 V2w* - 0

v.x - o (2.to)
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That (2.36)-(2.40) is a suitable generalization of a two-dimensional system P
can be verified easily by noting that b �¬�\�orLH+Lx, produces a system with no [_

varlatton In the y*-dlrectlon, and b+'D or LH+Ly produces one with no
w

variations in the x*-dlrection.

2.2. Spec__ral model

The smallest spectral model of rotating convection was studied by Veronis

(1966), and It is the a_proprlate one on which to base the present model; in

the irrotatlonal case, the Veronls model reduces to the one discussed by ',

Lorenz (1963). In the Veronls system, one wavenumber is used for representing

the vertical velocity field, two for the horizontal velocity field, and two

for the thermal perturbation. Here we us? the same distribution of harmonics

(

as in the Veronls model, but because we are studying three-dlmenstonal flows

in the presence of an arbitrary horizontal basic current VH(z) , we must use !

all four possible combinations of the trtgonometrlc functions in order to .
¢

represent all possible phase relationships created by the linear terms in

(2.36)-(2.40). |

1Consequently, an appropriate form for the spectral expansion is

q* = [ql sln(x* - y*) + q2 cos(x* - F*) + q3 sln(x* + y*) . !

+ q4 cos(x* + y*)] cos(z*) + q5 sln[2(x* - y*)] (2.41)

+ q6 cos[2(x* - y*)] + q7 sln[2(x* + y*)l

+ q8 cos[2(x*+ y*)]

w* = {w1 cos(x* - y*) + w2 sin(x* - y*) + w3 cos(x* + y*)

+ v4 sln(x*+ y*)]sln(s*) (2.42) i

•-- .. !
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T* " [T 1 cos(x* - y*) + T2 sin(x* - y*) + T3 cos(x* + y*) i

+ T4 sln(x* + y*)] sln(z*) + T5 sin(2z*) (2.43) '

in which q* represents the form for the u* * *, v , and p expansions. These

expansions provide repre8entations of every linear te.-m In (2.36)-(2.40),

" except for the horlzontal component e* of the rotating Reynolds number.

Either more way.numbers tn the vertical or a _txture of slnz* and cosz*

terms would be needed In th_ expansions In order for e* terms to remain in the

spectral system; we cons].der the latter case briefly in Section 3.3. We note i

that the filtering of the e* effects by the above truncation does not seem to ,
Z

cause serJous problems in vlew of the results of Etllng (1971), who notes that B "_

the orientation angles of the rolls are controlled by the vertical component

f* of the Corlolls force.
I

2.2.1 The roll form. The 33-coefficient spectral model obtained by

substitution of (2.41)-(2.43) into (2.36)-(2.40) can be reduced to s

17-component one by using the spectral versiof, of V.v* - 0 first to produce

diagnostic equations relating the pressure coefficients Pl to the other

coefficients u i, v i, wI, and TL, and second to express the vI components as _.,

functions of ul, vl, and Tt. This is the standard approach for three- , i

d_aenslonal Incompressible systems (e.g. r)utton, 1976) and accomplishes the

same task as that of the for.mtion of vorticity equations !n two-dlmensional

• systems. Upon inspection of the resulting 17-component model,

we find that the complete spectral

system Is composed of two 9-component subsyst_me:

R1 " (Ul, u2, us, u6. teI , v2, TI, T2, Tb)

it2 " (u 3, U4, u7, us, v3, v4, T3, T4, TS)

X! all the components of one sub4ystem are zero initially, then they always

I
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will remain so; as in earlier models (Shirer and Dutton, 1979; Shirer, 1980),

this behavior is typical of the primary convective solution that branches from i_

the conductive, or triviaL, one at she critical modified Rayleigh number,

Nonlinear solutions in which all 17 components are nonzero would be secondary

branch¢ i in this model, but we do not consider them here, Beca,.se the equations

_ontain Fourier coefficients of the background wind field, the R1 and R2

subsystems cannot be reduced further, Upon inspection of the expansions

(2.41)-(2.43) for the dependent variables, we _ee that _I is associated

physically with two-dlmenslonal rolls havlng axes parallel to _he line x_ = y*

while R2 is usoclated wlth rolls having axes parallel to the llne x* = -y*.

Thus, R1 and R2 rep_e_ont roll solutions that a_- perpendicular to one another i

in the dl_nslonless _oordinate system, b,_ are actually separated by the angle

I

B = 2 tan-l(I/b) - 2 tan-l(Ly/Lx) (2,44) I

i
We conclude then that a fundamental role of the 04slc wind field Is to

organize the convective solution into bands, a result conalstent with the

] typical observation that rolls develop during windy, statically unstable

i conditions (Kuattner, t971). The same type of organization also will occur _

during windy, stable condltion_, however, when the secondary clrculattona can

derive energy from the _an wind. i

In _rder to determine the expe,_ted roll geomtry, tm usu_ thrt the

preferred orltntatton angles and aspect ratios are those that yield the smallest

values for the c_ttlcal modifted _aylelgh number Ruc , or equivalently the

smallest values for the critical keynolds nunber _t c. Yor soma values of the

extarual parameters, we will find in Section 3 that two or aorta orientation
i

a_gles my produce Ltnlmum values for luc; these a_qJles rarely differ by ms much

as 90", and _hsn they do. the values of Isc are not identical. Mtthout loss of %_

..... _-. QI
"-- I _ _ _ _ * lit _ _ _ _ r _ _ "
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generality, then, we may assume that one branch, say R1, will be associated uith

the roll that develops first at the absolute "atntmu_ val:e of P'mc" In order to

simplify greatly the _ns]ysts, we rotate the (_*,y*) coordinate system in the
A_ ^ A

horizontal plane to (x,y), In which the x and y axes are respectively parallel

to and perpendicular to the roll axis (Fig. 2.2). The orientation angle e is

" thep the avgie between east an_ the roll ax£s, with angles north of east being

positive and those south of east being negative.

The appropriate rotations for the eight uI and vI components in =he
s

(x*,y*) systems to the _i and v components in the (x,y) system are

- i+b2)-i/2u I " (bul+ vt)( i - 1,..,8 (2.45) ;

v -I12 _.:
_, " (-uL+bvt)(l+b 2) i = 1,..,8 (2.46)
P

If _ denote t_mporal derivatives by an overdot, then the resulting spectral _

system Is

u 1 " - ¢tu 5 "_2u6 - [p(A2+I)/Alu 1- A2u2+(faP/A)Wl-flW 2 (1.47) ._

• !i

u2 " - vlu 6- v2u 5 + A2Ul - [p(A2+I)/A]_ 2 - _lwl - (f*P/A)v 2 (2.48) "

4"

- ._t- +_- + ('_ A4)';5 6u6 " 2 UlU2 u2wl 2 _ u (2.S0) _
i

.LIl/r ....
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(NORTH) [
y

9

V

x (EAST) '_
l

Figure 2.2 Relationship _tveen the _tural coordinate system (x*, y*) and

the roll coordinate system (x, y). The erientation angle _tween

east and the roll axle 14 denoted _ e; orientations north of east i

are given by _sltlve values of 6, south of east _ _gatlve i

values of _.
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31 --{f*P/[A(A2+I) I u] - [p(A2+I)/A]Wl

(2.51)

+ {[2A2+(A2-1)A4]/(A2+I)}w2 + [P/(A2+I)]T 1

_2 " {f*P/[A(A2+I)]}:2 - {[2A2+(A2-1)A4]/(A2+I)}Wl

(2.52)

• - [p(A2+I)/A]w2 + [P/(A2+I)]T2

" TI " wiT5 + (R + Hnl)w I - [(A2+I)/A]TI + A4T2 (2.53) :

w2T5 + (R + Hnl)W2 - A4TI - [(A2+I)/AIT 2 (2.54) >

:

i

T5 " - 2_wlTl + w2T2 + w3T3 + w4T4) - (4/A)T5 (2.55) I
!

I _0 2_ [wl2 w22 w3 2 , x+_-_Hn 3 + + + w42 i

+ 2(WlW 3- w2w4)cos(2x*) . ,

* 1/2 * "_,
+ 2(WlW 4 + w2w 3) sln(2x )] dx

v3 " - w3v 7 + w4v 8 + FlY3 + SlY 4 + F2v3 + S2w4 - BIT 3 (2.56)

v4 " - v3v8 - w4v7 - SlY3 + FlY4 + S2w3 - F2w4 + BIT4 (2.57)

I

........ - m 8_
I
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" 1- 1- B2(w32 w42 ) 4APv 7 $3v8v, = -_-v3w3 + _v4w 4 + - - + (2.58)

I!

i- I-

v8 =_v4w 3 -_v3w 4 - 282w3w 4 - S3v 7 - 4A_ 8 (2.59)

_3 ° - F3_3 - F4w3 - S4w4 + B3T3 (2.60) .

_4 = F3_4 + S4w3 - F4w4 + B3T4 (2.61)

J

i

4w3T5 + (R + Hnl)W 3 - B4T3 - S5T 4 (2.62)

_4 = w4T5 + (R + Hnl)w 4 +SsT 3 - B4T4 (2.63)

in whlch the definitions for Bi, FI, and S i are given In Appendix A.

2.2.2. Controlling parameters. From inspection of the above spectral
J

system, we see that the appropriate vertical aspect ratio governing the } _

stability will be A a(1 + b2) 1/2 In (2.2S) which is given by the domain height Jt li
zT dlvlded by half the horizontal wavelength I41 of the roll. For convenience, _

In the remainder of the arctcle we will drop the subscript H when referring to
t

the wavelength L of the roll. Also, we have used the following Fourier

coefficients Ai for the basic wind field and Fi for the basic wind shear:

W . 2 t
AI = 21-1 _ U*(z*) cos z dz* (2.64)

0

I A

A2 " 2s-I _ Vt(s*) cos2g * ds t (2.65)
0
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"n' ^

A3 = 2_-1 f U*(z*) sin2z * dz* (2.66)

o Ii
II

^ .2*
A = 21-I f V_Lz*) sin z dz* (2.67)

0

rI = f sin(2z*) dz* = A3 - A1 (2.68)
0 _z*

r2 = .-1 f _sin(Zz*) dz* - A4 - A2 (2.69)
0 _z _'

vIn which * and * denote the components of the background wind in the along- '_

roll and the cross-roll directions, respectively (Fig, 2.2). • :,
t t

The Fourier coefficients for the latent heating terms are i
f

n1 = (1 - zl*/_)/2 �(4w)-lsin(2zl*)(2,70) _ _

n3 " - 4(312)-1 sin3z'*L (2.71) !

• 1
• _n which Zl* is the dimensionless cloud base height. We note that the Fourier f

I

coefficients (2.64)-(2.69) represent the portion of the ambient wind f_eld felt

directly by the roll, and as we show in Section 3, provide energy to the roll ,_

solutions via the parallel instability.

Latent heating effects enter the system (2.47)-(2.63) in two qualitatively

different ways. First, they lead to definition of a modified Rayleigh number

Rm = R + Hn1 (2.72)
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|1

for which l_ > 0 occurs when the environmental lapse rate Ye exceeds a _[
!

weighted average of the dry and _oist adiabatic lapse rates; this inequality

may be wrStten as

¥e > (i - nI) 7d + nI 7m (2.73)

s

Because n1 can be interpreted as the cross-sectional area of the cloudy

region, (2.73) is equivalent to the slice method instability criterion of

BJerknes (1938). The modification (2.72) of the Eayleigh number is the only • *¢i

manner by which the latent heating effects will enter the characteristic

equation and the stability determination in Section 3.
t

However, when cloud base is between the bottom and the top of the domain,
(.

a second latent heating term n3 is produced in the equation (2.55) for the i

coefficient T5 of (2.43) that represents the convective alteration of the _;
(

vertical temperature profile. The term n3 was not in the models of Shirer and
)

Dutton (1979) or Shlrer (1980) because they assumed that the cloud base z1

was at the bottom of the domain; from (2.71), _e see that n3 = 0 in their case

of Zl* = 0. In (2.55) we correct an error *_n Shirer (1982) who did not

"4calculate this latent heating term correctly and who consequently produced a

qualitatively incorrect branching diagram in his Fig. 3. i
I

The need for n3 in (2.55) arises from the assumption that latent heating i*

occ.=rs only in regions of upward motion in the upper portions of the domain.
J

; Consequently, the convective solution alters the background temperature profile

dlfferently above and below cloud base Zl* end n 3 represents some of this

effect• From (2•71) we see that this asymmetric heating is most pronounced and

n3 reaches its largest value when Zl* = w/2 corresponding co a cloud base in the

middle of the doltn; as Zl* approaches either 0 or s, the asymmetry in heating

vanishes and so does n3. As noted above, this affects only the nonlinear

II/ III II III I II . II __ _ li a i . -- '
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I,

i

convective solution through the magnitude of T5 and does not alter the critical $

, value °f Rm" I!The coefficient of the n3 term in (2.55) is an ellirtic integral

involving the Fourier coefficients of the vertical velocity and so its value

: depends on the magnitude of the solution itself; moreover, it provides an

• energy source in the equation for the only term that links the magnitudes of 1

the RI and R2 rolls. The possibility exists that a secondary branch connect-

ing the two roll solutions is present and significantly affected by the i
g

magr_tude of the n3 term. However, the details of this secondary branch would i

be modified greatly in all likelihood in a spectral model containing more [

i=
: degrees of freedom. Also, the occurrence of an elliptic integral makes |

!
analytic study of these branching solutions quite difficult. Thus, we do not

investigate the secondary branching properties of (2.47)-(2.63). Fortunately, '_r

however, the elliptic integral can be calculated for the two-dimensional RI _i

and R2 branches; in these cases, (2.55) simplifies either to _

. _ 1 _ 1 (2.74) Ø_2T2 - (4/A)T5+ _n3(Wl2 + w22)1/2

_ or to

T5 i i (w32 w42)I12 " L• - - _w3T 3 - _w4T 4 - (4/A)T 5 + Hn 3 + (2.75)

The forms (2.74)-(2.75) eliminate the cranscritical bifurcatict shown in Fig.

3 of Shlrer (1982) and thereby lead to qualitatively correct Hopf bifur-

• cations (see looss and Joseph, 1980). In addition, the corrected system

contains temporally periodic roll solutions that are sinusoldal functions of

time and whose aaplit,ldes can be calculated analytically, as found by Shirer

(1980) in the case of Zl* " 0.

b_
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From inspection of (2.47)-(2.63)and (A.I)-(A.13) we see that the RI roll

does not depend on the horizontal aspect ratio b, and so this roll does not _
!

feel the presence of the R2 roll at all. _hen b-1 and the two rolls are

perpendicular to one another, we find that the equations governing the R2 roll

have the same form as those for the R1 roll. But when b_l, the R2 roll

m

depends strongly on b, and therefore vla (2.44) on the angle B separating the

two. Because there is no nonlinear coupling of the two roll forms, there is

no way in this model to determine a preferred value of b or B. A larger model

would be needed containing a secondary solution linking the two rolls (cf. i
+

Chang and Shirer, 1984), and minimizing with respect to b the corresponding !

secondary bifurcation point on the R1 branch would likely lead to the expected

separation angle B. Thus, in the remainder of the article, we consider only
!

the development of the R1 roll.

I

J
2.2.3. Energetics. In order to elucidate the energy sources for the R1

roll, we form an energy equation from (2._7)-(2.54) and (2.74). Upon defining • '

th-. energy E as !

:

1 - 2 1 - 2 u52 62 {.(A2+l)(w12+ w22)
i (2.76) '

1 i_12 1 2 2i +2" +'_2 + PT5

we find that

" w22)I/2E - (It + Hn1 + 1)P(WlTI + w2T2) + 2Hn3P(Wl2+ T5

- fl (UlW2 + U2Wl)

" 4. 4-
- [P(A 2 + 1)/A] [u12+ u22 + (A2 + 1)(Wl 2 w22) + T12 T22]

P

-8PA(u52 + u62) - (SP/A)T$2 (2.77) i
V

- " _, __ "" " _t__._,_/ .
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The first two terms on the right side of (2.77) are heat flux terms, the

* first of which representing the source for the convective Lnstabllity. The II

I
il third term is the usual Reynolds stress term (Dutton, 1976); because it

depends ou the shear component _i parallel to the roll, it repr.'_ents the

source of the parallel instability. Not revealed by the energy equation is

: • the need for the Corlolis term f* in order for thia instability to exist, but
J

the linear analysis in Section 3 will demonstrate that f* is indeed necessary.

We note that the perpendicular shear component r2 does not appear in (2.77);

thus, becaue this component is the energy source for the inflection point ,,

_ modes, we should not expect to find them as solutions to the model. The last

terms are the dissipation terms; instability and roll development occur when

the energy source terms are larger in magnitude than the dissipation terms.

: If there were no eddy viscous or conductivity effects included, then there _"

: would be no dissipation and therefore no energetically steady solutions "'

possible, only amplifying or decaying ones• Although the appropriateness of _,
!

_, using eddy viscosities in atmospheric models is in dispute, they are necessary _i

here in order to create an energetically consistent system.
I

' 3. Expected roll geometry

The simplest results for observable roll characteristics are those given by :i

• a linear analysis of the stability of the trivial solution to (2.47)-(2.63).

This analysis will provide both the preferred alignment and the expected ratio

of the height to the width of the rolls, and these parameters are natural ones

to be compared with observations such as those from KonTur (Shirer etal.,

: 1985). In this section, we will find that a variety of roll configurations are

possible, particularly when the therll stratification Is stable.

L

II II J • _ , --
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The (linear) stabl_ity of the conductive solution to (2.47)-(2.63) is m
E.

governed by a seventeenth-degree polynomial that factors into a linear [
!

equation and two eighth-degree polynomials. The coefficients of one

eighth-degree polynomial depend only olathe Fourier coefficients (2.64)-(2.69)

of the rotated wind field and so from this polynomial we may determine the

value of the critical modified Raylelgh number P'mc(or critical Reynolds
r
t

number RecNsee (3.5) below) for the R1 roll. The second eighth-degree

r

polynomial governs the values of Rmc for the R2 roll; as mentioned in the

previous section, these values wlll be greater than those for the R1 roll, and

:| so are not considered In the analysis.

J Each eighth-degree polynomial factors further into a product of quadratic
A

_I and slxth-degree polynomials. Neutral (linear) stability, bifurcation and
' i

nonlinear roll solutions are signalled by the vanishing of the real part of
i

one of the roots of the characteristic equation, and it is easy to show that !

this cannot happen for the roots of the quadratic. Consequently, the

sixth-degree polynomial _overns the development of the rolls, and this

polynomial can be factored as follows

((A2 + I) (A_)3 - (aI + ibl) (AX)2 - (CoRm + c 1 + Id) (AX)

- [eoRm + el + i(foRm + fl)] } x ((A2 + I) (AX)3 (3.1) ' I

- (aI - ib L) (AX)2 - (corm + cI - Id) (AX)

- [eoRm + • 1 - i(foR m + ft)]) = 0

in which the coefficients are given in Appendix $. Hopf bifurcation to a

t

t temporally periodic nonlinear solution, which has limiting frequency Im(X), is

glven by /m(A_) - O. or by A_ = ± la. When this form is substituted into

! (3.1). ve obtain the coupled system in the critical P_ayleigh number _ac and a:

k,
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2 + d_ - (e R + e I) - 0 (3.2)al_ o mc

- blu2 + fl " 0 (3.3)(A 2 + I)_ 3 + (CoRrac + Cl)_ + foRmc

Only real values for _ are admissible solutions to (3.2)-(3.3). The common

l
roots of (3.2)-(3.3) can be found by dividing the quadratic (3.2) into the

cubic (3.3) and then requiring that the remainder vanishes. This leads to a
8

i cubic equation in Rmc
I "

[3 Rmc 3 + &2 Rmc 2 + &l Rmc + &o = 0 (3.4) i

the coefficl_nts of which are given in appendix B. It is easy to show that

real roots of (3.4) occur if and only if real roots of (3.2)-(3.3) occur and i

so all real roots of (3.4) are acceptable. [
f

Significantly, the coefficients ti do not depend on the wind coefficients

A1 - A4, but on the shear coefficients rl and r2; so the stability of the _

conductive solution, and hence the value of Rac, can be altered only when

secondary circulations develop in the presence of mean wind shear. This i

result is consistent with that obtained by Kuettner (1971) and Shirer (1980).

The magnitudes of _I and r2 vary as the roll alignment varies, and so the

magnitude of Rac depends on the orientation angle e. Finding the minimum i

values Rs of P-mr will yield expected orientation angles by producing preferred

" values for rl and r2" As we will see below, the fact that P_ic is governed by

a cubic equation that may have either I or 3 real roots complicates the

analysis considerably.

We can separate the orientation angle from rl and r2 by noting that we

lay noraallze the wind profile by the wind speed I (,T)I at the inversion i

height z T and define a _ynolds number h by
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Re - [V(zT)[ ZT/V " [V*(,)J,/P (3.5)

With the fact that both the wind shear coefficients rl and _2 are gtwn by

differences between two coefficients for the wlnd components themselves (of.

(2.68)-(2.69)), we my express _1 and r2 as

rl = Re P [a 5 cos(e) + a 6 sin (e)] (3.6)

r2 = Re P [a 6 cos(e) - a 5 sin (e)] (3.7)
£

in which

2[]y,(_)j.2]-X 7 _ i= - U*(z*) cos(2z*) dz*
a_

0 !'

(3.8) i
g

2['l_(zT)lzX]-X /oT.U(z) co,(2,z/zT) dz i i'

Iv*¢,)1,2]-1/_ v*¢.')co.¢2,')d,* i'

a 6 2[ i

zT

2[wlY(zT)JzT]-I [0 V(z) cos(2Vz/sT) dz (3.9)
o ;

i
and U and V are the background wind components in the natural east/north

coordinate system. Here e is the angle between east and the roll axis, frith

positive values for angles north of east. Thus, we see from (3.6)-(3.7) that

_I and _2 are equlvalsnt to P,e and e; in addition, we have separated the wlnd

shear coeponents into easily mmaaurable quantities a5 and a6 that depend

exclusively on the mtbient wlnd profile end the dimensionless paralters Re

and P that depend on the lees accessible values of eddy viscosity v and con-

ductivity • . With [onTur data tn Shlrar e__t81. (1985), we detet_mlem aS and a6
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from aircraft obs_rvatlons of y(z) and zT and then we ask whether reasonable

values of v and < will produce consistent values for 8, A2, Rs - mln(Rmc), and _l
I

min (Rec).

With (3.6)-(3.7) we find that (3.4) may be written in the form

. Rmc 3 + (kI + k2Rec 2) Rmc 2 + (k3 + k4Rec2 + k5Rec 4) R=c

(3.10)

+ (k6 + k7Rec2 + k8Rec 4 + k9Rec6) - 0

We note that if we should .Jew Rec 2 as the critical parameter, then (3.10) is

a cubic polynomial in Rec2, In the analysis presentea in Section 3.2, we wlll

view the problem as simultaneously one in Rmc and Rec 2 and admit on_ those

modes corresponding to minima with respect to both critical values. The

results then will not depend on the prejudices of the investigator. Also, we i

note that for very large values of Rec 2, (3.10) becomes a cubic equation in i !

the (moist) critical Richardson number (Asai and NakasuJi, 1973) '

Re c . _ Rac (Rec2 p)-1 (3.11)
l

Requiring that P_, and Re both exceed their respective critical values then is

• equivalent to requiring that Rl < Rec.

3.1 Special cases

• There are three cases in which the cubic equation (3.4) for Rac or Rec2

can be factored easily, &s a prelude to the general situetion presented below

in Section 3.2, we briefly discuss these cases here.

3.1.1 f.e , 0. The irrotational case was considered previously in the two-

dimensional sodel of Shirer (1980). Here the roots of the cubic (3,4) are given by
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Rmc - (A2 + I)3/A2 + 4[_22 [(A2 + I)(P + 1)2]-1 (3.12) I

_nd

R - 2(P + 1) (A2 + 1)3/A 2 - (A 2 - 1)P22/Pmc

(3,13)

± i 2(A 2 + 1) P2 [A4 (P - 1) + 3P + 11 (AP) -1

The first root Is the saum as that found in Shirer (1980) and shows that the

effect of the perpendicular shear is to suppress convection; the minimum value "

Rs of Rmc Is given by the vanishing of 32 In order that the roll does not 6eel

directly the perpendicular shear. From (3.7) we see that 32 = 0 is given by

the value eo of e for whlcL

i
tan(0 o) = a6/a 5 (3.14) I

4

This angle Is the same as a 2 In Shlrer (1980). In addition, the preferred value | i

A2 = 1/2 for the squared aspect ratio I8 the same as that found In gaylelgh-Benard

convection.

!
The second root Is complex, except In the singular case P - (A4 - I)/(A 4 + 3).

This can occur only when A2 > I an_ P < 1. When P and A2 are related
;

, j

In thls way, ve obtain from (3,13) s value for Rmc that Is reduced by the

wagnltude of the perpendlcular shear component r2. This 18 a signature of the

inflection point Instability. by uhtch roils vould be able to extract energy from

the shear component r 2. Sue because of the singular nature of this second "
4

solution, ve cannot conclude that Inflection point modes exist In the wdel.

._ Hoverer, m can conclude that aode8 In uhich A2 ) I and _2 ts no_zero aLght be

possible in the retails, el case, and In Section 3.2, _ vilI demonstrate that

indeed they die exist.

U
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3.1.2 F2 = 0 and P = 1. Because the expected orientation angle is given

by F2 = O when f* = O, it is natural to investigate the rotational solutions

in this case. The cubic (3.4) yields only one root for g4ac and it is given by

*2 A-2 31-1R . [(A 2 + 1)3 + f ] _ f*2 [4(A 2 + 1 (3.15)
mc

When f* ~ 0.1, Shirer (1982) showed that (3.15) gt,:.,s a good approximation to

Rmc when F2 _ O; values of f* ~ 1 c_n occur conaaonly, however.
o I

The first term in (3.15) is the usual critical Rayleigh number for coave-rton

in a rotating fluid (Chandrasekhar, 1961; Veronts, 1966), and the second repre

4

sents a destabilizing term arising in the pre_ence of rotation fre_ the wind shear

component parallel to the roll axis. This is a msnlfestation of the parallel
i

instability mechanlsm of Lilly (1966), which would be given here by the case
f

Rut = O. We note _.ha_ f* is essential to the existence of this mechanlsm, in Ii'
agreement with Lilly (1966) who found that the parallel modes disappeared in the

trrotational (Orr-Sonmerfeld) case. Inspection of (2.47)-(2.48) reveals that the

Coriolls and viscous terms are of the same order of magnitude when f*~l and this
I

also agrees with an observation Lilly (1966) made concerning a necessary condition

for the existence of this mode. The form of (_.15) suggests that in "he present
t

model, there is one Instability mechanism havinf as special cases the two . i
. i

mechanisms of thermal and parallel instability. Apparently, then, it nttgbc not be

correct to vlew _heu as separate mchanisM leading to convective solutions having

•
different characteristic gemmtrl.es (gtling, 1971; /mat and Nakaeuji, 1973). The

/

model discussed here effectively links the two mchanlsm, although we will find I

In Section 3.2 that three branching nonliMar solutions are possible in some cases ]

and that for some values of Pat, ena root yields the minimum value I_ of gmc,

vhile for dlfferent values of Re, tha other two roots produce gs-
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3.1.3 KmC = 0. Paral!el instability is usually discussed in the absence i[:
' of thermal effecta, which corresponds here to a (moist) neutral strattftca- _k

tton. The constant term :go In (3.4) can be factored, but when Rmc - 0 only one

root exists for which Rec2 is both real and positive. This root is given by

2 [4p2 (A 2 + 1)3]-1 ._ [(A2 + 1)3 + f*21A-2 _ f*2 rl _.

(3.16)

+ (A2 - 1)2 _22 [4P2 (A2 + 1)1-1 = 0

d

When we use (3.6)-(3.7) to express (3.16) in terms ot _o 2 and e, we find that

• the minimum value of Rec 2 occurs when tan(3) = a6/as. This is ,e same _

: orientation angle that we found In (3.14) for the general Irrotatlonal case; of :

Interest here is that e o gives the maximum value for the along-roll shear !
. i

component rl, a fact consistent with the occurrence of parallel modes. For
!

this orientation angle Oo, the critical value Rec 2 of Re 2 is given by _ i:I

Rec2 = 4(A2 + 1)3 [(A? + 1)3 + f*21 [A2f*2 (as2 + a62)]-I (3,17) _ ,!

which is independent of the Prandtl number P. For the expected aspect ratio I ")

A, we find from _Rec2/_A 2 = 0 that A2 and f* must be related by _

b t

J (A2 + 1)3 (sA2 - l) + f*2 (2A2. Z) = o (3.18) 1

showln$ that 1/5 < A2 < I/2, _'_ch corresponds to broader ceUs than provided

by Imylelgh-BeSnard instability. When f* ~ 0.1 and Rec2 is large in magnitude, ' ,

we have A2 ~ 0.201; but when f* ~ 1.0, _ bav_ A2 ~ 0.2_, For _- domain height

of I km, we find that &2 ~ 0.2 corresponds to roll wavelengths L ~ 4500 m,

while &2 ~ 0.25 corresponds to L ~ 4000 m. Observational evidence _or such

large ratios of L/sT have been given recently by Walter (1980) and Kelly (1984).
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We will find that the mlnimu_ value of Rmc can be given in the general case by |l

Rat = 0, and in this case Rec2, 8, A2, and f* satisfy (3.14), (3.17), and J

(3.18). We note that the truncated model presented here, unlike the one

discussed in Shirer (_982), has a nontrivlal nonlinear solution when Rmc = 0;

this occurs because, unlike in the Lorenz (1963) form on which the Shlrer

(1982) model was based, the rotating convection truncation of Veronis (1966)

produces nonlinear terms in the equations of _otion (2.47)-(2.50).

" 3.2 The general case _

We have found in the previous subsection that the single branching mode _

occurring when f* = 0 oz P._c = 0 has an orientation given by r2 = 0 or _.

tan(0) = a6/as; for thls mode we discovered that the preferred value of &2

decreased from 1/2 as the value of Rec 2 was tcereased• Thus, as discussed in _

Shlrer (1982), we might expect in the general case to find preferred _

1'Y orientations near Oo = tan-l(a6/as) and squared aspect ratios satisfying
'[

A2 << i. But Rmc is governed by a cubic poly_.mial and so two other real

roots having correspondingly different geometries might be po_sible. As i_
hln _d by the complex roots in the irrotational case (Section 3.1.1), we will

• flud here that other modes near A2 ~ 1.0 are indeed possible when the value of _!

Rec 2 is large enough• i

In order to dev_lop a coherent picture of the expected branching behavior, |

I:
we first determine for fixed Re c the minimum values of Rmc with respect to the _

• orientation angle O and for fixed Rmc the minimum values of Rec2: both

are given by (3.10). As mentioned previously, this is consistent with the view
o

that the value of II must be smaller than an appropriate one _l c. Upon

imD,icitly differentiating (3.10) vlth respect to e and using the fact that

both _c/_0 = 0 and _Rec2/_O = 0 at a ednimum, we obtain
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kl0Rmc 2 + (kll + kl2Rec2) Rmc + k13 + kl4Rec 2 + kl.sRec4 = 0 (3.19)

i:
We may combine (3,I0) and (3.19) via poIynomtal division to produce a single

polynomial In Rec2 governing the extrema of Rmc (or of Rec):

r6Rec 12 + r5ReclO + r4Rec 8 + r3Rec6 + r2_c4 + rlRec 2 + ro = 0 (3.20)

Once Rec2 Is obtained from (3.20), we obtait: Rmc from (3.19). The above

analysis introduces spurious roots into (3.20), which can be identified from the °

division calculation. Moreover, the roots of (3.20) provide both maxima and

minima of Rmc and Rec2, but these can be identified from the signs of _2Rmc/_62

and a2Rec2/_62. Only extrema that are minima of both Rmc and Rec are accepted,

and so the problem yields the same results whether we view the critical

parameter to be Rm or to be Re.

As an example, we use the Ekman profile _

!

O*(z*) - Jv-g*[[1 - exp(-z*/D e) cos(z'/D*)] (3.21)

I

V*(z*) " [Vg*[ exp(-z*/D*) sin(z*/D*) (3.22) !

Here D* = Dw/z T is a dimensionless Ekman depth, which In some cases will be "
• !

related to f* via D* = (2/f*)1/2; but because we have tKot constrained U* and V* '
: i

to solve the governing system (2.36)-(2.40), we will not always llnk D* and

f*. Here an orientation angle o,< 0 ° corresponds to a roll aligned parallel to . ':

the (westerly) geostrophic wind. Me note that in Shlrer et al. (1985), we show

for the KonTur cues that the preferred wavelengths of the rolls are not

particularly sensitive to the form of the wind profile; although the

orientation angles are.

-p
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3.2.1 Parallel modes. In Table 1 we show how the Fourier coefficients a5

and a6 vary as functions of Ekman depth D when the domain height is 1 km and the

" '- latitude is 45"N; for convenience we have assumed that IV(zT)I " IVgl in

_ (3•8)-(3•9)• We also give the preferred orlenta:ion angles Co, dimensionless
?

: wavelengths L/D and critical Reynolds numbers Re (3.17) and

ReD- [_glD/V •
(3.23)

• We consider both the cases in which f* Is tied to D* via f* = 2/D.2 (denoted by

. 7) and the case in which f* is untied to D* (denoted by U); when f* is untied

we instead llnk it to Rec so that ]Vgl = i0 m/see• In all cases f* and A2 are

_ _ related by (3.18), and we may calculate corresponding values _f IVgl and v•

_' An inspection of Table 1 reveals that, whether f* is tied to D* or not,

the orientation angles and dimensionless wavelengths depend strongly on D.

From depictions of roll circulations obtained in previous studies (e.g, Faller

and Kaylor, 1966) we find that the roll circulations are in the range 5D-6D;

moreover, they are oriented at -15 ° to -20" when they have dimensionless

wavelengths of 20-24 but they are oriented at 20-6 ° when they have wavelengths

of 13-17 (Lilly, 1966; Failer and Kaylor, 1960, 1967). For the tied case

i usually considered in the literature, the a_ • reported values agree with

!. those in Table I: when D = 159 m we find that = - 18" and L/D = 18 and when

D = 245 m we have 0 = 4" and L/D = 13. The values of ReD are smaller

• than those normally cited (e.g. Lilly, 1966). But we have used free rather

then rigid boundary conditions in formulating the model, and Failer and Kaylor

(1967) noted that the critical Reynolds number is smaller in the free case.

Thus, we conclude that we are representing correctly the parallel instability

mode. But we discover from Table 1 that for small values of D, only in the

untied case do the values of v and IVg] correspond to atmospheric ones, and

|

i
I ;
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so, although the wavelengths are larger in this case, we generally prefer to

view f* and D* as independent parameters.

As the value of D increases, the orientation changes markedly to one

having positive values, the dimensionless wavelength decreases and the

magnitude of Re increases dramatically. Remarkably, when D* = I, which is the
I

value used in Shirer (1980, 1982), the values of e and L/D agree with those

ucually cited for the inflection point _des. It is difficult to discern

• from previous studies whether the height of the circulation shrinks in half

from 6D to 3D as the orientation switches from - 20" to 20", and so ic is

unclear whether the above calculations might provide an explanation for these _.

other reported modes. In any case, because the results are sensitive to the

value of D, _t appears to be unwise to use the Ekman depth D to scale the

variables in the equations, i

3.2.2. Parallel/thermal modes. For the case D* = i, in Fig. 3.1 we show for ;
i

4 values of A2 the magnitudes of Rec as functions of 0 for which simultaneous : !

extrema in Rmc and Rec 2 occur. In this example, we have chosen aT = I000 m,

P = 1, and v = 14 m2 sec -1, which yield f* - 0.5 ¢ 2/D .2. These values for I
!

v and P are consistent with those typically cited (e.g. Krlshnamurtt, 1975).

• On the right side of Fig. 3.1 we show the dimensional values of l gl

corresponding to those on the left side for Rec. In the figure, local minimum

values of both R_c and Rec 2 are denoted by the solid lines, and local maximum

values of both by dashed lines; the angle 0o = tan-l(ab/as) and the values Reo

of Rec yielding P_c = 0 are also denoted.

From Fig. 3.1 we obtain a picture tamarkably similar to that often

obtained in an entirely different context (Shirer and Wells, 1983). Diagrams

having forms similar to those in Fig. 3.1 can be produced by cross-sections ";

through surfaces whose altitudes represent the magnitudes of nonlinear !

-j
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Figure 3.1 The magnitude of Rec for which both P_¢ and Rec2 are =tntu (solid j_

L

lines) or =sxtaa (dashed lines) trLth reapec¢ to 8, Here the mean

wind is given by an Bkman profile (3.21)-(3.22), zT = 1000 m, D =

318 a, P = 1, v = 14 =2see-l, f* = 0.5 and A2 = 0.1 (a), 0.5 (b),

1.0 (c) and 1.$ (d).
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N
solutions to truncated spectral models. Here, however, we obtain a cross-

II

section through a surface describing the relationship between two auxlllary I_

parameters that is required to produce extreme values for the bifurcation point

Rmc or Rec2 from which nonlinear solutions branch. Both types of surfaces are

governed by polynomials and so it is not really surprising that qualitatively

similar diagrams would be obtained in the two analyses.

From Fig. 3.1c we note that the mode having orientation angles near

• 8 = 80 is a minimum when Rec < 490 and Rmc _ 0. But when two other minima

appear, this mode becomes a maximum. Here, then, the vanishing of _2Rmc/_02

signalling a coalescence of a maximum and a minimum is analogous to the

vanishing of a characteristic elgenvalue signalling a coalescence of two

steady states (looss and Joseph, 1980). Interestingly, the transition from

one extremum to three extrema occurs at values of Rec corresponding to i

F
Rmc < 0, or to stable stratification. However, the three modes never meet; fi ,

the closest the double point gets co the neutral case Rmc = 0 is Rmc - -0,0698 ,
!

when 8 = 13.45 ° and A2 = 1.04. As hinted by the i:rotational special case

(Section 3.1.I), the two new modes are born near A2 = I, at values of Rmc near

Rmc = O, and at orientation angles for which _2 _ 0.

As the values of A2 are increased or decreased from A2 = I, however, the

nose point moves gradually away from the other mode (Fig. 3.1b, d). As noted I

above, the form of these figures is that given by cross-sections through a

cusp surface, with the one in Fig. 3.1c most nearly resembling the trident ob-

tained by a cross-sectlon through the cusp point. But typical cross-sections

through cusp surfaces would show the isolated pairs of solutions switching

places from the left to the right side of the other curve as the value of a

second crucial parameter is varied. This switch does not occur in this

example when P = 1, but it almost does near A2 = 1 and Rmc - O. Thus, the

J
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Ifact that the neutral case produces only one acceptable root appears to signal i

that the present model might be missing a qualitatively crucial parameter.

This parameter might be related to the Fourier coefficients of the wind

profile having larger wavenumbers than the roll itself; these parameters would

be necessary, for example, in order to describe enough characteristics of the

wind profile that the inflection point instability mechanism could become

active. Currently, we are investigating this possibility.

[ From the results presented here, ve expect that as the wind speed

increases, an orientation near that given by 0 = Oo would be observed if the

stratification were unstable, but that a rapid variation In orientation angle

"D

from 0 - 9o to one far from 0 = 0o would occur as the necessary stratification

given by the values of Rmc , changes from unstable to stable. Large deviations

" 8 from eo would be expected when the values of Rec are large and the

stratification is stable. Ne note that when the expected orientation angle

problem is viewed as a problem in the branching behavior of a governing
I

- i

polynomial, then the existence of a range of Rec for ehlch 0 varies rapldly i

can be predicted in advance if multiple solutions are posslble because this

behavior is typical of cross-sections through canonlcal surfaces like cusp I
;

surfaces. What ts important phys$cally is that the rapid variation in e • i

occurs near Rmc - 0 for which the boundary layer stratificstlon is neutral,

and so the allgnment angle would be very sensitive to the sign of the value of

4 Zinc. "!

When the requirement for minimum vsIues of Rmc and Rec2 with respect to i

A2 is added to the one discussed above, then the curves shmm tn Fig. 3.1

disconnect. ?tve curves for the local minima Rs of ltac (and Rec2) occur when

P - 1 and _* - 0,5, u shown in Fig. ].2 together vith some selected

corresponding velues of A2, The solid curves denote the lines for vhich Re is
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i
L a global minimum and so would provide the expected values of the parameters

and consequently the observed geometry of the rolls. Although the global _i
#

minimum occurs on the outer right curve when Rec _ 750, we note that the

values for Rs associated with the outer left curve are very nearly the sa_e as

_r
those for the outer right one and hence might provide global minima in a

slightly more general model. We note that the left curve will produce a

! global minimum when the magnitude of P is of the order of 0.I.

Although we see that five local minima are possible in this case, we find

that they divide into two classes. When the atratification necessary for roll

development is unstable, which here is given by Rec = 230 or very light winds,

one mode exists near 0 = 80 . The aspect ratio for this mode decreases to

A2 ~ 0.2 or L ~ 4.5 km when Rmc = 0 and decreases further to extremely small

values of A2 ~ 0.002 or L ~ 45 km when Re c ~ 2400. Thus, the first class is

t

characterized by rolls having very small aspect ratios or very large !

horizontal wavelengths. Two other modes, one near e = O" and the other near
J

0 = 30° are also in this first class, but thsy come into existence near |

Re c " 400. The squared aspect ratios for these modes are larger than the ones

for the middle mode, but the values of A2 still decrease markedly as the value

of Rec is increased• The last two modes are in the second class, and they are _

• born near Rec = 600; these modes exist at very large angles (30"-50") relative
I

to 90, and they have squared aspect ratios A2 ~ 1 that increase, or wavelengths I

L ~ 2 km that decrease, as the value of Rec increases. Rolls in the second 7
• #;

class, then, are characterized by aspect ratios of order one or horizontal _

wavelengths within a factor of 2 of the depth of the boundary layer. 1

Importantly, these wavelengths are within the range often observed.

Upon considering the global minima for Rmc and Rec2 , from Fig. 3.2, we

see that both the expected orientation angle e and the squared aspect ratio A2
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make two dlscontlnuous jumps as the magnitude of the Reynolds number Rec is

increased from zero. First the value of A2 decreases from 0.5 to 0.09 as the I_

value of _ increases from 0° to 24a; but then at Rec m 450, there Is a sudden

increase in the magnltude of A2 from 0.09 to 0.18 and of 0 from 24° to 31°,

The first Jump Is between two rolls in the first class. At Rec " 750, though,

" there is a more significant Jump in the expected value of A2 from A2 = 0.08 to

A2 = I.II and in the expected value of 0 from 0 = 29" to 0 - 52". This second

discontinuous change is between class one and class two rolls and corresponds
@

to a dramatic alteration in the preferred geometry of the cloud band. As the

magnitude of Rec is increased further, we find that the values of A2 increase

gradually from i.II and that the angles 0 inc*_,se slowly from 52" to as _ch

as 70*.

To clarify further the content of Fig. 3.2, we show In Flg. 3.3 seven

constant-Re c cross-sectlons on which projections of the n.tnlmum values of ' ._ i _

with respect to &2 are given as functions of 0 in order to Illustrate their ,
t

relative magnitudes and the means by Rich the discontinuous jumps in the
t

preferred values occurs. The values of A2 for each local minimum Rs of Rmc

are given as well. The lines on Fig. 3.2 trace the variattcn in the location
k

of the valleys shown in Fig. 3.3. _*
t

, For the case Rec - 200 (Fig. 3.3a), we obtain the usual parabolic shape I
I

for Rat . in which only one minimum occurs at 0 = 12" m, A2 = 0.29. However,

we note that the bottom of t ; parabola Ls flattened a bit, and from Fig. 3.3b
• 4

we find that at P.ec - 300 a dimple has developed at 0 - 25" and A2 - 0.19. A

i saddle point ta apparent in Ft&. 3.3b near the previous value of O = 12". ;he

occurrence of this dimple is a Inifeetatlon of the rapid variation in the

value of O near l_c - O that was created by the introduction of two

additional modes (FIB, 3.1). When Rec - 400 (FLs. 3.3c), ve observe that two

- -...
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local minlma have Joined the original one, and that the new minima have A2

values that are approximately double the one for the global minimum. .'.tRec =

500 (Fig, 3.3d), we discover that the original inL,er _ode is no longer the

global minimum because the one ac 0 = 30" has overtaken It. We note that

saddle points are beginning to appear near 8 = -5" and O = 45". As can be

seen from Fig. 3.3e when Rec = 600, the saddle point f_r e < 0 has developed

into a local minimum at 0 = - 10 ° and has a characteristic value of A2 ~ 1.

The _ode near O = 30" is still the global _nimum, however. At Rec = 700

(Fig. 3.3f), the right outer _ode now exists and has expected values of A2 and

Rs that are very nearly equal to those for the outer left mode. Flt.ally, when

Re c = 800 (Fig, 3.3g), the outer modes have the two smallest values for Rs and

a I ~ 1.15 for both of them. With subsequent Increases in the magnitudes of

Rec, the two cmter modes have increasingly smaller values of _, and no other _
I
I

local minima were found. The values of Rs for the outer modes are always

within a few percent of one another, even though the right mode is the global

rain ,_um; thus, it seems plausible that either outer mode would be i_
t

.2

observable. As menLtoned above, this depends on the value of P, with the l

r:ght mode occurring for P > 0.4 and the left mode for P < 0.4. _

A misleading aspect of the manner In which the above results have been

depicted is the conclusion that rolls can develop in any stably stratified

atmosphere. Eut for any given stratlf'catton, given by _c, the wind speed

J

at _r mast exceed a certain value given by Re c. This amounts to requiring •

that the valve of a Richardson _umber Ri (3.11) be sufficiently small or

negative. This conclusion agrees _rlth that _f others (e.g. Brovu: 1972;

Wlppermann e_t al., 1978) who showed tha't rolls can exist only In stable

mtaospheree having small chacacteriet£c v_luee of Rl. To see this in the

present context, in Fig. 3.4 we show as functions of _ and Rec th_ curves

_r
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Figure 3.6 The critical values of Re c and Rat for the five local minima given

In Fig. 3.2 The inner mode near 18" is denoted by a solid line,

the mode near 30" by a dotted line, the mode near 60" by a long

dashed line, the Bode near 0 ° by a dash/dotted line and the mode

near -30" by a short dashed line. Rolls may develop in regions q

in the ge-Ra plane to the right and above the critical lines•
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for the five local mlnzma discussed hove. Roll _de_ are possible on!y when _"

both the values of P'mand Re exceed their critical ones, that is when Rm and

Re have values that are above and to the right of the curves. The leftmost

curve Is the one associated with the expected mode and the transitions between

the three readerare clearly seen as portions of three of the curves are the

leftmost e. Of note is that for large values of Re, the outer modes denoted

by the long and short dashes in Flg. 3.4 occur for larger values of Ri than do

the other inner modes. The occurrence of a second class of modes at larger

values of Ri in a rotating Ekman layer was noted by Kaylor and Failer (1972),

who associated these second modes with internal gravity waves.

The pattern depicted in Fig. 3.2 is very robust: its form does not vary

much with f* or P. As the value of f* is increased, the value of Reo (3.17) i

i
is decreased and the outer modes can exist for smaller values of Re. The ,,

outer modes always occur in the range of 30"-50 ° from the orientation angle eo

;
that depends only on the Fourier coefficients a 5 and a6 of the background wind

shear. These outer modes then are well approximated by the orientations given

by r I - r2 or r 1 - - r2, the formulas foc which arc given respectively by

¥

ej - tan -1 [(a 6 - as)/(a 5 + a6)] (3.24) _,

04 = Ca. -1 [(a 6 + as)/(a 5 - a6)] (3.25)

Although, . golid physical explanation for these outer modes remains

elusive, the fact that the Fourier coefficients for the along-roll rl and the

cress-roll r 2 wind shear coefficients are nearly equal suggests that the

modes al_ related to some combination of the parallel and inflection point

aodes that de:ire energy from the Cl and r 2 component., respectively.
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Although the inflection point instability is not represented here in the

neutral case, its singular presence was indicated in Sec. 3.1.1 when f* = 0. If

we hypothesize that the outer modes given by A2 ~ 1 would extend to the neutral

case given by Reo, then we could see whether their existence is suggested by

previous studies. Because the location of all the orientation curves are tied

to 0o via a5 and a6, we may infer from Table i that when D* = 1/2 and 8o =

- 18°, _h_ch correspond most closely with the previously reported situations,

then the right outer r_de would first occur 30°-40 , to the right of 8o, or in

the range 12°-22 °. Moreover, A2 ~ 1 corresponds to L/D ~ 12 in this case, and

because the inner mode is the global minimum when Re = Reo, the outer mode

¥

would _xfst for lar?er values of Re. These values of 9, L/D, and Re are in _ :

the range reported for the inflection point instability. Thus, there tJ the
i

possiblity that the outer modes are extensions of these inflection point _:
t,

modes, but a larger model containing more degrees of freedom would _ needed

to test this hypothesis.

3.3 Alternate parallel modes _

The discussion presented so far has concerned rolls developing from a

cosine mode of the background wind profile (cf (3.8)-(3.9)). However, a

Fourier analysis of the Ekman profile (3.21)-(3.22) reveals that there is '_
• _i

significant energy in the sine models as well. In addition, $hirer (1980)

noted that three orientation angles corresponding to three roll responses to

1

• the cosine and sine modes might be possible (see his equations (3.16)-(3.18)

for the angles al,a2,_3), and Kelly (1984) notes that all three angles

correspond well with the alignment observed during a case of cloud streets.

_oreover, theoretical studies of rolls developing in a stratified shearing

atmosphere (e.g. FaUst and Kaylor, 1969) reveal that th_ rolls tilt

_ntftcantly with height, suggesting that both sin(z) and cos(z) modes might
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be important in modeling the nonlinear response with a perturbation stream

function _. Although use of cos(z) modes in the expansion for _ is not

compatible with direct _pplication to the atmospheric boundary layer, their

use will allow a preliminary investigation of the roll modes developing from a

sine mode of the background wind. Hore suitable vertical etgenfunctions are
t

given by Chandrasekhar (1961). Because the analysis is much more

algebraically difficult in this case, we present here only a brief summry of

the results for these alternate parallel instability modes.

To create the alternate model we must replace the vertical eigenfuctions

of the even-numbered terms of (2.41)-(2.43) with ones that are 90" out of

phase. For example, for :he Rl roll, (2.42) becomes i

i

w* = WlCOS(X*-y*)sin(z*) +w2sln(x*-y*)coc(z* ) (3.26) !

For the parallel modes given by Rm = O, this new expansion leads to a spectral t' {

systeB in which e* (2.31) remains and for which the branching behavior depends

on the four Fourier coefficients (cf. (3.8)-(3.9)) i

b1 = 2[w2lg(ZT)J]-l[u(z T) - U(0)] (3.27) '

• i
b2 - 2[,21£(zT)11"l [V(z¢) - V(O)] (3.28) I

2[wlY(zT)lZz]-l.. _T o ._b3 = - _ U(z)sln(2sz/s T) dz (3.29) _
0

g

b4 = - 2 [wly(ZT)JZT]'I _ T V(z)sin(2WZ/ZT ) dz (3.30)
Q

The polynomial governing a Hopf blfurcatton to a periodic r_ll solution

is either a quartic or a sixth-degree polynomial in Rec, depending on whether
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,

.; e aad are tied or untied to the Ekman depth D_ (see Sec. 3.2.i.). The

- _ present case simplifies to that for the cosine modes only when e* = O, bI = O,

and b2 = O, for which Rec, f* ano a are given by (3.14), (3.17), and (3.18)

once the coefficients a5 and a6 have t'e.enreplaced by b3 and b4 respectively. !

_ We al_o note that _3 in Shlrer (1980) corresponds to tan8 = [(b2-2b4)/(bl-2b3)]

! but thls Is not the preferred orientation in the rotational case discussed here. ,
i

_' For the Ekman profile (3.21)-(3.22), in Table 2 we show the results

• associated with these alternate par .lel modes when e* = 0 and in Table 3 _'

,_ those when e* = f*. As in Table I, when e* and f* are in.pendent of D*, we

i! tie them to Rec so that ]Vg] = 10 m/set. From Tables 2 and 3, and in agree-

merit w/th Etling (1971), we see that e* only has a small effect on the i

preferred orientation angles or the dimensionless wavelengths, although It _.

does alter somewhat the critical value of Re. Orientation angles that are In .'_
:i

the range ± 20" occur when the Ekman depth D _ 440 m in the untied case and

'i D _> t'3 m in the _led one; this is In constrast to the results In Table 1 for ._

t the cosine modes, in which we found orientation angles in the range ± 20" only

I lwhen D < 440 m. These results suggest that for very small Ekman depths, the

cosi_ modes might be appropriate ones, while for larger depths, Lhe sl_e

modes might be relevant ones. In Shtrer etal. (1985) we present evidence _
1

" that the sine parallel modes provide better predictions than do the cosine i

parallel modes for the orientations and wavelengths of the cloud streets

observed during lonTur, for which the gkman depth divided by the citcelation i
• t

depth was in the range 0.5-1.0. We caution that the above results for the i'
sine modes are preliminary because they depend on use of margtndlly

appropriate vertical basis functions in the spectral expansions.

m
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! 4. Concluding remarks Ii
!

: In this article, we have presented slgnlflcsnt physical and theoretlcal
i

results on boundary layer rolls from a study of a truncated spectral model of

shallow Bousslnesq convection. Physlcally, _ have shown that the hypothe-

sized developmental mechanisms of the parallel and thermal Instat_l* are,

in fact, _pecla] cases of one instability mechanism, because in many cases

boundary layer stratification and mean wind shear combine to allow one

secondary flow to develop. Theoretlcally, we have demonstrated that t_e •

apparently linear problem of finding preferred orientation angles and avpect

ratios for the branching solutions is actually an intricate nonlinear one

that can be understood completely with .he aid of the recently emerging

perspective of (contact) catastrophe theory.

The necessity of performing a nonlinear analysls arises from the i

assumption that the preferred geometry of the rolls is given by the values of

the spatial parameters that minimize the values of the bifurcation points that i

I

=an be determined from a linear stability analysls of the conductive solution.

In this problem, expressions for the critical values are nonlinear functions

of the orientation angle and aspect ratio. As a consequence_ study of the

function controlling these critical values leads to a polynomial relating the

auxtUary _rameters and to questiocs concerning whether unique or mnlttple

admissibl_ 8olutions, and therefore roll modes, exist. Thus, the province of

contact catastrophe theory has been entered (Shlrer and Wells, 1983), and a
s

new sat o( topological questions can be posed concerning the necessary

generality of the model under study•

Although we find that the present spectzol model might not be able to

describe all possible interchanges among preferred modes_ ve do obtain several

significant results. In addltlon to llnklng the p4rallel and thermal

F "Z .Jme

1986002282-281



281

instability mechanlsms, we discovered that the external wind field organizes

the secondary circulation into two-dimenslonal rolls by introducing certain I_

linear terms into the spectral model. When the thermal stratification Is

either unstable or neutral, only one minimum value for the critical Raylelgh

number or the critical Reynolds number exists and hence only one roll mode is

- preferred; this mode has horizontal wavelengths that broaden significantly

with increasing values of the Reynolds number Re, which is proportional to the

wind speed at the top of the domain. Once the stratification becomes stable,

there is an upper limit to the spacing of the cloud streets because other

minima become possible. When the value of Re is sufficiently large, the

preferred roll spacing becomes discontinuously _ch smaller, to one within a

factor of 2 of the boundary layer depth. Generally, the orientation angles of

the broadly separated rolls are near those for which the Fourier coefficient i

of the wind shear parallel to the roll is ,,,oh larger than that of the

t

component perpendicular to the roll; but _or the narrowly separated rolls, _

both shear components are large and near_y equal in magnitude. Although

several orientation angles and aspect ratLos are associated with local minima

in the value of the critical Raylelgh n_mber, the oarticular one that provides

the global mi-!mum depends on the magnitude _ the Prandtl number P.

The results presented here are applied in Shlrer etal. (1985) to three

cloud street cases observed during the 1981 convection ard turbulence

experiment KonTur. Qualitatively, they are the same as th_se discussed here

• for an Ekman wind profile.

!

?
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Appendix A

Coefficients in Spectral Model (2.47)-(2.63)

The definitions of the Bi coefficients are

• B1 = (b2-1)P/[(b2+l)(A2+l)] (A.I)

B2 = (b2-1)/[2(b2+l)] (A.2)

• B3 - P/(A2 + i) (A.3)

2

B4 = ( + I)/A (A,4) ,.

The Fi coefficients Involve f* and they are given by

F1 = f*p(b2-1)/12bA(A2+l)] - P(A2 + I)IA (A.5) i
i

F2 = f*P[(b2-1) 2+ 4b2(A2+l)l/[2b(b2+l)A(A2+l)l (A.6) Ii ;

F3 = f*p(b2+l)/[2Ab(A2+l)] (A.7) t !

F4 = f*p(b2-1)/[2bA(A2+l)] + p(A2+I)/A (A.e) I

!,.
The Si coefftcie,._tsInvolve the Fourier _---_ , , Ai antl71 of the wind _.q

and wind shear; these are defined in (2.64)-(2.6_ ",_ t'_-,-- , are 1• I

.!

S1 " [2bA 1 + (b2-11,2]/(b2+l) (k.9) J

S2 - {rl4A2b(b2-1)+ rZ[A2(b4-6b2+l)- (b2+Z)2]}/[(b2+l)2(A2+l)]
(A.lo)

$3 " [2b(Al+ A3 ) + (b2"l)(A2 + A4 )]/(b2 + 1) (A.7

llili I _L lill ----m ,_ ,i i I
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S4 - [4bAl + 2(b2 -I)A2 + (A2 - l)2bA3 II(^.12)

+ (A2 - Z)(b2 -Z)A4I/I(b 2 + 1)(A2 + t)l

S5 - [2bA3 + (b2 --l)A4]/(b2 + I) (A.13) -

• i
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4

,- 9pendix B ['

_" Coefficients In polynomial for the critical modified Raylelgh nu:aber Rmc

,= The coefF, tcients in the factored characteristic equation (3,1) are

= -(A2 + :)? (2P + 1) (,z.l)
a 1

-
_ t:1 = A[(A 2 + 3)A 2 + 2A2A 41 (B.2)

='_ =. ,42 (8.3) ".t
_ • CO .,.

cI - P (P +2) (A2 +1) 3 + AT'[2A22 + tA2 --I)A42 + 2(_ 2 + I)A2A 4] _

(B.4)

_ f*2 F2 '_.

_ d = A(A 2 + I) ((A 2 + 3) (F + I)A 2 + 1_2 . I + P(3A ? * J.)IA4}

.!

i = p2 A 2 ,,A2 + 1) (8.6)
e o

. {2_,22 - 2• eI -P2(A2 + 1) 4 + A2(A 2 + 1) + (A2 _I)A 4 p ,

I

+A 2 A4 [A2 - I + (A2 + 3)P]} - f12 p2 (A2 + I) (II.7)

+A4 rl f*P 42

fo = "t'2l' A3 (s.8)

m

I II | LIll I -- I - .... I
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+AP (s z+i) 2 (X2(sz+3) +K4tp(Az+I) +Az-lj] (s.9)

+ f F1 A P (A2 + 1)

The eoefflcient:s in the cubic polynomial (3.4) governing Ruw" are

_o " al _'i2 + d gl hi -hi 2 el (B. IO)

ItI - 2 go gl al + d go hi + d gl ho - h12eo - 2ho h_. eI (B.11)

Jt2 " aI go2 + d go ho - ho2 el " 2ho hl % (8.12)

2
_'3 " - ho eo (B. 13) v

In vhlch i

al 2go " al bl eo + d e° (A2 + 1) - fo (B.14) ! :

g, " b1 aI • 1 + d e I (A2 + 1) - fl al 2 (B.15)

hO " co al 2 + % aI (A2 + 1) (B.16)

hi " ¢1 al2 _ el al (k2 + I) + d bI aI + d2 (a2 + I) (II,17)

C-C#
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t. Introduction _i'

The p_rpose of this •r_.icle is to conp•re the geometries and

dlmnslonless par•meter :-_.luee that were cbaracterlstlc of cloud streets

observed during the 1981 convection and turbulence experlumnt KonTur with

those values obtained frou • undel of parallel/therual Inst•billty modes

dlscuss•d by Shlrer (1985). Previous cotp_rlsone of thl8 type have been L
l

difficult because nest models have been developed for study of •n _.knan layer

(e.g.. _.illy, 1966; Failer and Kaylor, 1966; Brown, 1970; As•l and NakaauJi,

1973), whose wlnd profile only crudely •pproxinates that found in the

• tnospberic boundary Layer. An advantage of. the model of Shtrer (1985) is :_

that it uses the Fourier coefficients of an arbitrary uean bind profile to

estimate the preferred geosetries of the cloud bends, and so ._trect
I

coup•rlson8 betwun theory and observ•tlons are such easier. !

That thle approach bight be 8 successful one was demonstrated recently by
,p

Kelly (1984) who coup•red observations of the aliauuent of sou bintertimo

cloud streets over Lake _lich£gan with the orient•tionJ produced by • model of !

laylsigh instability of Shirer (1980), and Kelly found good agreeu_nt between

theory and observation. But hls results aLsht have been fortuitous because he "_ ,i

had to use radiosonde data to calculate the Pourler coefficlente of the wind

profile, and generally these obeervatloas are too bidely spaced (.,. 300 a) for

s sufficiently accurate computation of the Fourier coefficients. A more

rigorous test of the approach can be obtained frou the wind profiles lasured

by aircraft durln8 KonTur; because thls set has such feaster mrtlcal

resolution (- I0 n), this data set Is batter 8u£tad for an accurate

couputation of the _ecessary Fourier coefficients.

In the following uctioQ we briefly review the KonTur experiment and t

describe the relevant observations. In Section 3 w mere•rise the undel of i
[
I

m- ,-2"-, JmV-ws_. "_ .....
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Shirer (1985) and pay particular sccentlon co those parameters chaC are
s

amenable to comparison with observations. Finally in Section 4 we show which I I

of the roll modes found by Shirer (1985) appear ¢o describe the observed cloud

streets.

. 2. Observations

The KonTur experlmenc was conducted show. the German Bight of the North

Sea during September and October, 1981. The goal of the experiment was to
q !

collect a data set of basic since and secondary flow variables characterizing

several different classes of convection, ranging in scale from boundary layer

rolls to open cmlls. On three days, 18, 20 and 26 September 1981, cloud

streets were observed and the data subsequently analyzed In detail; a complete ,+_

auRary of these results is given in Brulmmr and Grant (1985). On both 18 and _

and 26 September, the rolls were observed ahead of an approaching warm front, !

and on 20 September behind a _eak cold front. !

Tvo instrumented aLrplane_, a German FALCON20 and • British HERCULES , f

C-130 were operated together duri_ the exper!manc. &c the beginning and the I

end of each flight actssio,_, the aircraft measured the vertical profiles of the

wind, temperature and wecer vapor Ltxing ratio down co I00 m above the ocean.

Tn Chase profile runs, the horizontal wind components were measured co _"
m

accuracies of + I u/s and the temperatures co _+ O.OS _. These masuremencs

form the data base for the present 8cudy, and the specific profiles are given

In Sr_mmer and Grant (1985). Durin_ Cha main pert of 8 flight aLtssion,

the aircraft flew coordlnaCe_ "L'-shaped patterns having 25 na long legs

nearly perpendicular to and parallel Co the streets.

Some of the meauremencs _tlevant Co the present study a_e sumnarized in

Table I. The _lSnnencs of the cloud streets could only be deCerttned

]

t
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visually by the scientists on board the •ircc•f_ to within _ 15" of the actual

orientations; on 18 and 26 September, the _,an boundary layer wind direction J

was used but on 20 September, 15" to the right of the man direction was t_-

Visual esti_tel and thm time series that were measured during the cro) zoll

ilight legs were used to determine the mgnitudes of the cloud spacings L; iu

the case without clouds (Z6 September) the ULtxing ratio data were used, vhil_

in the cases with clouds (18 and 20 September), the radiational flux data were

• used. Cloud base z I and cloud top _re deteralned visually by the scientists

in the aircraft; for the cases on 18 and 20 September, the highest cloud tops
r

)

were used for the roll depth H, while on 26 September the highest levels at

which significant turbulence yes present were use_. The inversion base z i was

deteruined from the temperature profiles co be the level at vhlch • sharp

increase in potential temperature occurred. The eddy viscosity v was

calculated from the usual flux-gradlent relationship; the appropriate a
J

momentum flux was found from the cross-roll momentum spectra by integrating 1

over the portion of the spectrum to the right of the roll-scale frequQncy

band. The uncertainties in the values of v ere large, and its actual values _!

s=y vary between one-half and twice the reported ones. In any case, the given

magnitudes of v were used together with f - 1.2 = 10 -4 s "1 to calculate the

• values for the £knan depth D - (2 .)/f)I/2. From Table I we see that these

values of D are in the range (II2)H to H, and these ere larger then those i

no_lly found in studies of £k_an layert (e.g., Failer and Kaylor, 1966) for

- HIS. Other relevant parameter values depend on the hsll_.tof the _'
which D

, model domain helm| considered, and they are presented in the _ext section. !
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3. Cloud Street Hodel _
!

Shirer (1985) developed • nonlinear 1or-order spectral •ode1 of

convection occurring In • three-dimensional, rot•tin8 environment containing - :

theraal stratification and an arbitrary height-dependent horizoQtal wind. The

Iodel simulates t_o-dlmenelonal planforu that orlllnate fro_ • coabination of

the thermL1 and parallel instability mechanism• propneed by others as

candidates to explain cloud street development (Brotm, 1980). Although the

model Is • nonlinear o_e, tho critical values of the control pare•stere

representir4 the forcinKs that drive the rolls are deteriLtned by obtaining the

neutrally stable modes from a linear analysis of the basic state. The

expected values of the response paraneters representing the preferred roll

geometry are those producing the snell•st values of all the control pare- ,.

meters. The values of these response per•asters are nest easily compared vith !
1

i the observations; if good results are obtained, then the nonlinear uodel upon i
which tint linear analysis i8 based likely has sufficient desree8 of freedou i

I

for representinS the nonlinear secondary circulations theuselve8. For a

neutrally stratified hounder7 layer, Shirer _1985) considered rolls that

extract emer87 from one of two _rces: 1) the lowest order sine terns of a

Fourier expanslou of the nean rind shear profile, vhich are o_u_valent to the

toy•st order cosine tern8 of the man _nd progxle, or 2) the average sheer , ;
I

and levees order cosine tern of the man rind shear, vhich are equivalent to

the sine tern of rlse sd.nd profile. Here the principal results of the eodel

are reviewed.

3.1 Goveruin8 peranttere
|

; The end•led rolls _re able to d_rim their snarly free an _tabla

therlml 8tretificatima, 8:l.vee by • uodified Eaylaleh mmber

= I_Tti_e-(l-nl)Id-al_u]l [vcT(O)w 4] (3.1)
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or from the shearing mean wind field whose intensity can b_ measured in part

by a Reynolds number

Re - Iv(zT>lz=/v . (3.2)

• These are the tvJ control parameters of the problem. In the definitions (3.1)

and (3.2), zT is the model douLain top _d the height of the roll circulation,

Ye is the constant envlronu_ntal lapse rate, Ya is the constant moist

adiabatic lapse rate, Yd is the dry adiabatic lapse rats, T(O) Is the air
f

temperature at the bottom of the doanln, n I is a Fourier coefficient defined :
• I

J in (3.4) that is related co the cross-sectional area of the cloudy region in !

which Latent heating Is assuld to occur, IV(zT)I ts the _nd speed at the

domain top, v is the constant eddy viscosity, and _ is ..,a constant eddy
J

thermometric conductivity. In addition, the Prandcl number P - v/_ provides a

•--asure of the relative importance of the dissipation of ao_ncua to that o_
|

heat •

Because of the uncertainties in the observed roll heights, w consider
i

several values for zT that cover the reported range_ of cloud or roll tops H

and inversion heights z i (sea T4ble 1). From (3.1) and (3.2) ve see that; i_ '_I

and Re can vary _rkedly rich ST, and In Table I1 ,m _tve their values •

" together vith Chose for the eq_ared _pect ratio A2, which is defined here by ;
f
J

A2 - (2ST/L) 2 • (3.3) ?

• |
I

To calculate values o! I_, ve make asvaral assumptions. For x the valu_
f

Of Psi iS usa_ The values at 7e are 88Clssted from IT(O) - T(tT)J/sT. and

as a result, they vary mrkedly _tb ST, the rarJ_s of ¥e in Table IX are

detarttnsd by using for the temperature T(O) the folloviq three estimates: i

J

[

p _r

I III I _ Ill _ II _ I
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the first is obtained by extrapolation of the aircraft data down to the

surface, and the other two are obtained by adding 0.5°C and 1.0"C to the first

value (by _hese differences, the sea surface is warmer than the air). Ou the

other hand, the same value (5 K4'k_)for the moist adiabatic l_pse rate Ym

seems appropriate for all cases. Because the cloud top h and the domain

" height zT do not coincide in some cases, we me the following definition for

,, uS:

• n 1 = (X - zl)/(2z T) - [sinC2_Fl/z T) - sinC2,zl/ZT)]/(41) . (3.,',)

For cases in which H > ZT, we set H - zT in (3.4) Equation (3.4) is a !

slightly more general form for n 1 than that given In Shirer (1985), in which

H = z T is assumed. _owever, (3.4) is not completely general because the width

£ of the cloud is assumed to be half the horizontal wavelength L of the

circulation; for cases F to H, (3.4) gives an overestiauate for the cloudy area i

|

because Z < L/2. From (3.1) we see Chat the necessary condition Itm > 0 for

convection is equivalent to Ye > (1 - nl)Y d + nl_m, vhich is the slice method

criterion for conditional parcel ineCability given by BJerknes (1938). i

As can be seen from ;,,,'_- values of P_a In Table II, most cases on 18 i
!

September and all cases on 26 September correspond to statically stable _

conditions, and all cases on 20 September to statically unstable conditions.

• lTheme _re consistent _th the observations on 18 and 26 September of rolls
T

penetrating into an inversion associated with an approa_=hins warm front and

• on 20 September of rolls occurring in the unstable air behind a weak cold

f rout •

3.2 Possible cloud street modes

ShLrer (1985) found that sac cloud street mode is possible in statically

unstable environments, but that three _Lsclnct o_ea are possible in statically
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stable enviroumencs; a11 chase modes derive their energy from combinations of

tharm81 and dynaaic forcing. The presence of a rotating envlronaent is

important because the Cor£oi18 and the viscous terms in the equation of motion

h_e tle same order of ugnitude. As noted by Lilly (1966), this is a

sigrutf;ure of modes tapping ener_ frost the wind shear component parallel to

the roll, and he denoted these modes as the paraUel instability ones. In the

model of Shirer (1985), the sizes of the Gortolis terms are measured by the

! r,JtaCing kynolds number fe given by t

ft = fzT21(vw2) . (3.5)
4

Of note here £s that fe is not independent of Re because both parameters

cootain v in their definitions. The ratio of Re and f*, given by the Rossby
t

numbs r

J

_. lo - Re/f* - Jv(zT)J,_/(zTf) (3.6) '_

is detendned from the observations. In the dLtscuesion _elow we Ltnttt the use i
!

of the term parallel instability and paralleX stoles to the neutrally j

stratlf£ed ease when _u=0. _ _

3.2.1 ¢oeine parallel nodes. The paralleX £nstabillty modes found by
s

Shirer (1985) to have preferred orientations and wmvelengtbe that most

closalty allreed with those r, ported for Klman ]Layers by L£1ly (1966). Faller

aml Kaylor (X966. 1967) and others m r.hoa, dlsveloping from the lowest order . !

sine terms of the mean wind shear profile, or equ£vali_tly vla £ntngratlon by

parts tree the lowest order cosine terms of the ambient wind profile. These

Xatter foruuletione are easier to calcutta from observed wind date and are

|ivan by
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a5 - -2 [,l_(z_)IZT]-If__ U(,)coa(Z,z/z z) dz (3.7_

a6 --2 [,[V(ZT)lZT]-lj': T V(z) cos(2wz/z T) dz (3.8)

L in which U(z) and V(z) are the orthogonal wind components in a rlghc-handed

coordinate system. As a consequence of the form of the expressions (3.7)-

(3.8), we refer to these modes as the cosine parallel Irmtabillty _des.

The coordinate system used to define (3.7)-(3.8) is quite general and Is I

chosen to be the one in which the d_ta is presented; Shlrer (1985) chose east
1

to specify the x-axis only for convenience. In general, the orientation angle _ ,,
t

e for the roils will be the angle between the x-axls and the roll axis, wlth
}

counterclockwise angles being positive. In the analysis in Section 4, the

expected value of e is 0". The orientation angle 0 and the aspect ratio A are

the t-co response parameters of the problem, because the values of them that i "
minimize the values of the control parameters l_a and Re provide the expected !

geometry of the streets. _

The wind shear coefficients P1 and P2 in the roll coordinate system are

!'i
rl " _ P 1"5 cos(e) + •6 sin(e)l (3.9) !_.+i

v

P2 " Re P[e 6 cos(e) - e5 sln(e)] (3.10) I

]
6 !

I

In which P1 is the along-roll and F2 the cross-roll shear component. For t

these cosine parallel modes (or cotncidantally for purely thermal modes +

developing in an irrotettonel environment), the cloud streets are found t_ +

choose an orientation chat maxlmisea the along-roll shear (Shirer, 1980, +

, !

l
|

..,.+ ... ..+.+ .....
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1985). From (3.9)-(3.10) ve see that thLs orientation Is given by [

t
eo - tan-lCa6/a 5) (3.11)

and that it also causes the cross-roU shear to vanish. In his study, Kelly

(1984) used (3.11) because It corresponds to the foraula for a2 In Shlrer

(1980).

Shlrer (1985) found that the critical kynolds number Reo In the neutral,

parallel Instability c_se, can be expressed u Rm -0 and

" kee 2 " 4fko2 + l)31(Ao 2 + 1) 3 + f_aJ/[AO2fo2(a.52 + a62)] , (3.12) i
$

whese _nlmua v._lue wlth respect to both A2 and 0 occurs when _

?

fo e2 = (As2 + i)3(1 - $Ao2)/(2_ 2 - ,i.) . (3.13) _

1 This result: is Independent of the Pzandtl number P, but depends critically on 1 |
1

Inclusion of the CorloIIs term fo* In the _del. Wlth the _td of (3.6), _e I i

may coabide (3.12)-(3.13) to relate As2 to the observed values of lh), as and : {

a6 v18 J -_
I

2 SRo2(a$2 + a62) " 12 + 6[4 4. $1to2(a52 �a62)1I/2 _..'_

A° = 25 il02(e52 + a62) . (3..I,4) ., ' -

One4 ko has been determined from (3.1h), we may obtain a value for fo * from

t_.13), for leo from (3.12), and for uo from (3.2). These values together

with 0o say then be checked qainst those t_ported In Tables I-II, and _ do

this in Section 4 (see Table III). Typlcel values for As2 given by

(3.14) 8re _2 . 1/5, _lch corresponds to _ - 4.5.

t,
I I I I L i
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3.2.2 Cosine nonneutral modes. For a boundary layer characterizzd by

Ra > 0 and Re < Reo, (in which Reo is the critical value (3.12) in the neutral

case), Shirer (1985) found thec only one mode is possible. As _he values of Re

vary, the preferred orientation angles e are approximately given by O = 0o,

but the expected values of A2 increase from i/5 to I/2 as the crlCical values

of Re decrease and as those of Rm increase. For ._ayleigh-Benard convection

in a calm environment, the aspect ratio obeys A2 = 1/2 or L/z T = 2.8.

For a boundary l_yer characterized by Ra < 0 and Re > Reo, Shlrec (1985)
•

found a single mode having preferred alignments _ear 9o, but having wave-

lengths that broaden as the critical value of Re increases above that for Reo.

However, in a boundary layer having a sufficiently btable stratification,

a second mode occurs for which the along-roll and cross-roll shear :

coefficients rl and F2 are nearly equal in magnitude. Kaylor and Feller !

(1972) found modes similar to this secoud one, and they related them to i

propagating internal gravity waves° For these second modes to exist, Shirer

discovered that the values of both Re and _m have to exceed their respective

critical values Re3 and R_, and chat this is consistent with the usual

requirement that the value of a P_tchardson number Ri = - l_/(aeZP) not be too

large. These modes are coc_istently oriented 30" to 500 on either the right _

the left of the alignment given by 6 o and their angles are labeled 83 and tor

e4; moreover the preferred values for A2 are near 1, corresponding to

L/s T ~ 2. _

4 For all the cosine modes, the expected values of A2 fall in the ranges

given in Table II. Thus, a critical test (in Section 4) is a comparison

of observed andmodeled orientationangles, for the two cosine modes are

separated by 30" to 50".

1986002282-304



304

3.2.3 Sine parallel modes. As noted by ShXrer 41985), not all the _1
energy in the _esn wind profile that is available for roll developlent is in !_'_

-

the lowest order cosine teras a5 and a6 of a Fourier series. Indeed, as a5

and a6 decrease in Igntcude, ee see froa 43.12) thxt k o will increase in

value; other rwdes having semller critical Reynolds nuabers might be possible

and so become the expected ones. For exaaple, there could be significant

energy in the mean shear and lowest order sine terms of a Fourier expansion of

the wind profile, and for an Ekman profile Shirer (1985) considered for the

case _a=O the parallel instability modes that develop from these terse. These

are referred to as the sine parallel nodes and depend on the coefficients

t

= _::21VCZT)l]-I [u(zT) - u(0)l (3.x5)bl

I

!

b2 = 2[,2JV(zT;!]-I [V(ZT) _ V(O)] 43.16) j

b3 o - 2[,j.v(zT)jzw]-xl r :,(z) ,xn(z,z/a T) ds (3.17) !

! ,tl.Xy_T i: b4 - - 2[,IV(ST) I v(z) 81n(21z,et T) d . (3.18) I /

. i In th£8 cue the wind shear coefflc£ant8 in the roll c_r2inste system are _ ItF
(of (3.9)-(3.10) for _1 and _2 )

El = Re PiCb I - b3) cos(O) + (b 2 - b4)sJ.n(e)] (3.19)t

!i _2 " _ P[(b2 "" bt) cos(e) - (bI = b3)eLn(o)l (3.20):1
1

l

t

2,
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£3 " Re P[b 3 cos(_) �b4 sin(e)] (3.21) !i

!,

_4 " Re P[b 4 cos(e) - b3 sin(e)] . (3._2)

• UnfGrcun•tely the f•ct th•t _1 _ _3 end _2 _ _4 greatly complicates the

• n•lysls, and eliminates the possibility for simple formuJas coaparable co

those in (3.11)-(3.14) fo_ the preferred par•meter values. For example, the •

• orientation angle for which the roll-perpendicuLar shear _-4 vanishes is

Op = tan-l(b4/b3 ). However, this angle does not lead to the vanishing of the t

other ro11-perpendlcular component E2, because in general bl_0 and b2_0. In

addition, the alignment angle in Shtrer (1980) analogous co that for the sine
}

parallel modes is a 3, given here by _3-t•n-I [(b2-2b4)/(bl-2b3)]. Su_ cnls

angle does not provide the preferred, orlentaclon of the rolls either.
e

Consequently, the preferred parameter values, vhtch will be denoted by a i :
!

subscript •, •re deteralned nummrlc•lly by solving • cubic equation in Re2; as I

in the previous cosine parallel mode case, the appropriate values for A• 2, 0a, i
i

f•* end va •re those that produce the smallest critical value _a for P.e. i

i
Generally, for both _-kman proflles and the lonTur profiles discussed in ,_
_-eClon 4, the preferred angles ea •re ones for whlch J_3J>>]_41. Thus, the -"

• rolls ere allgned so that the magnitudes of the roll-parallel sheer components

greatly exceed those for the roll-perpendicular ones. The Coriolls pare=tier

is rmcees•ry am wall, so It Is reasonable co refer to these modes u parallel
P

modes. But _2 "_s often large in m_nltude too, haplylng ChaC there Is •

slsutfic•nt energy source from • perpendicular component of the wind. No such

energy source exists for the cosine parallel modes.

IE

I
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f,
$hirer (1985) found for Ek_sn profiles that the sine parallel modes are

t_

associated _rLth o_'iencaCions within + 20" of the geostrophic wind vector when

D is in the range ZT/2 to sT . This is the same range for V that characterizes

the gonTur observations (see Table I). Unfortunately, Shirer (1985) did not

consider the nonnautral sine modes and so did not deterulns whether modes

could exist that are analogous to the nonnsutral cosine ones for which

_I " _2" Of note Is r_at because the spectral expansion for the stream
q

function of the sine parallel modes contains both sfn(z) and cos(z) terns,

these rolls will be tilted in the vertical; the cosine parallel modes have /

only sin(z) terns In the stream function expansion and so these rolls cannot

tilt.

4. Coaparlsons ; !
!

In order to coapare the observed and theoretical results, we usune that

the observed values of Re and gu are near their critical ones for instability.

Thid will be an acceptable assumption _f the roll-scale velocities and thermal

perturbations are small in Ignltude. Free the observed croes-sectlons

through the rolls oQ 18 and 20 September 1981 _Lven in Steamer and Grant _, _. _,

(zges), w, f*nd that: Jv'] ~ o.2 ,de and IT'] ~ O.Z X, ,,_lch ,re .maZZvalues - i
#

relative to those of the scaling variables V-10 Lie and To~290 K used in "

the model.

Fro8 Table IT, we ue that the boundary layer t8 nearly neutrally
qt

stratified (J_t " 0) in caeU & and B, end unstably stratified (ga > 0) in

cases F to H), From the results summarised £n Section 3, vt note that these

ar,t the cases moec likely to have orientation8 near the angles associated with

the parallel Instability modes: in the neutral cases. _ should find Re , Reo

i
-a 4e- w ...... r "
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;. for the cosine modes or Re - Rea for the sine modes, while in unstable cases "

we should ha_'e Re < Reo or Re < Rea. The stably stratified cases (Era < 0; rl

cases c to _-, i to K) m_ght be yell approxiuu_ted by the cosine para1161 mode, r'

for which 0 = 60 and Re > Reo, the sine parallel mode for which e - 8a and

Re > Rea, the cosine nonneutral mode for which 0 - 8o _+ 40" and Re > Re3 and

• Ru > _n3, or the sine nonneutral mode which unfortunately was not considered fL

by Shirer (1985).

4.1 Comparisons with cosine modes
• f

In Table III we give the modeled and observed values of orle_tation
0
i

anglem e, wavelengthe L, Reynolds nuahers Re and eddy viscosities v for the II _ i

: cases 8uanarlzed In Table II. The observed _rlzLd proflles given in B_uumer I _

and Grant (1985) are already in the roll coordlnete system, and so the ,

observed orle_tatlons are 0"

i'

Generally the results given in Table Ill show that the cosine parallel I

modes (subscript o) cannot explain the observed cloud streets: The

orientations are too far from their observed values and the uasnltudes of Ee

" generally exceed those for Reo In both stably and unstably stratlfled

sltuatlons, while Re > llJ o is expected only for the stable cases. Generally

the modeled values for L are within the reported ranges.

• Expected orientation angles 0o that are such Zerger then the observed

ones suggest that the second cosine modes, for which the Fourier coefficients

of the along-roll, rl, end cross-rot1, r2, _rlnd shear coupenents are nearly

equal in magnitude, u/ght explain the observations In the stably stratified

cases. Table ZII also sunmsriuea the expected values for these modes i

(subscripta 3 end 4). _81n, the uodelsd orientations 03 and 04 rarely _jree

I

I

_t

, _-_ .-_ ._ _ _t -'_
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with the obferved ones, the wavelengths L3 tend to be too snell, and the

values of the Reynolds numbers Re3 too large. _

The poor agreement between the model r_sult8 and the observations tin be _"

seen in Fig. I, in which the observed ranges of Rm are shown as functions of

the observed normalized values of Re. The dashed llne gives the critical

• values of P_a and Re for those modes that correspond in the neutral case P-m" 0 :
i

to the cosine parallel modes, and the solid l_.nee give in a fay selected cases

the critical values for the nonneutrel cosine modes ear which l ll-l zl.
?

° Rolls are expected when values of &m and Re are co the right of the curves. {

No observed values of Re approach those associated wlth the nonneutral cosine !
!

modes, and they would not, even if the vaXuee of v ware adjusted by s factor !

of 2. Horeover, the locations of the crlticsl curves for the nonneutral modes
i

do not depend vary much on the particular value of P; the chosen value of P,

P - 0.4, Is the value for vhlch both the right sods 03 and the left sods 04 i
J

have approxluCely the same critical value, of itm and Re. ! "
!
q

From the above comparisons, we conclude that the cloud streets observed

during KonTur did not derive their energy from the lowest order cosine terse i

in the Fourier expansion of the man vlnd profile. The Ek_an depths D

observed during KonTur were qulCe Large, when normallzed by either the cloud _.

top U or the doamin height zT (see Tables _ and 1I). Shirer (1985) noted that
I

• the cosine parallel sodas are sore likely usociaced with secondary J

clrcu_ltlOnl devllopln I in boundary _ylrl hsvln4g vary Ill relative Ekaan
!

depths for td_tch O/s T ~ 1/5. Po concluded that sodas extracting energy from !

m

the average shear and sine Ceru bl to b4 In the man u_nd profile were sore

likely to explain the cArculation patterns Men D/8 T yam ir the range 1/2 co

1, u characterises the Y.onTur cases, we -1oo observed that these patterns

would have spprec_Labla t/Its Ln (:he vertical; Brmmer and Grant (1985) noted

I
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rq_m 1. Crttt_L _ of I_ aid nomellsed _rttt_l _Lmm of b for
the eoeSae undeo ,bo_ I'o Q.t; for thle ,_tue of P, the nmmeutr81
uodee lure tim um _rttt_L v_Lw d Itu, The d_hed line IrLvee
tim v_Lueo for tim 8o400 that m eooo_tLated with the I_Sllel
lnmttlldL]LtLty _; thU (woe occult8 8t Ii - 0 and h - _ lad It 18
lab•lad with • 691;. _tO oolld ].time I_m _,a • |_ aalel rJw redes
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that the cross sections through the rolls on 18 and S0 September showed

apprec/ab]e tilt, particularly In the thermodynamic varlable8. The sine
I

parallel modes, the,l, appear to be better candidates for explaining the KouTur

observatlcn8.

4.2 Couparlsons with sine parallel modes

Although Shlrer (1985) did not consider the stratified problem, we sa>"

exaLtne the neutrall) stratified case here under the aasu.,ptlon that the

• actual L'.*rlentatlons and wavelengths found in a 8tratltled atmosphere would be

nser those applicable co the neutral case. We say t@s this hypothesis by

checking whether the observed values of Es are greeter than c;.ilr theoretical

, [

values Eee in the stable cases and whether Re < Eea in the unstable cases.

In Table IV ve show r.he expecr.ed orlenr.ations ea ._nd wavelengths La, as '

well as the values of RJa and re, for the _1oud streets assoclate4 with the
,i

sine parallel andes. In _onr.rasr. r.o r.he cosine andes (Table I11), ve flnd I _

r.har. _vo or three aliZnments are possible In may cases; all are given, trlr.h / !

the orientations associar.ed vlth r.he smallest, values of Asa listed first.

, Hany cases in Table IV give accept.able agreement, in -11 displayed para_,_t-.r j.'

Ivalues. Generally, the beer. qreeaenr, occurs vhen r.F_ inversion height zi,

rat.her r.han the cloud r.op H, is used as r.he model domain height _.: In case A i

" for 18 September, case G for 20 Sepr.esber and case I for 26 September, the i

or!ear.at/one are wlr.hln 10" of r.he observed values. Of nor.e is r.hat s i is r.h_,

alr.ir.ud, l aseuned by 5hirer (1985) r.o correspond r.o _:he doaain height; because i

he did nor. andel circular.Lone pener.ratinj inl:o r.be capping at.able layer, it is

not surprising Char. s T - s I leads r.o bur.Cur _Jreemmnr. r.han does 8T - H.

Zn addition, 8b depicted in F/So 2, the relatiouehip beccv*.en its and Iraa

is generally 88 uould be expected if the nonneur.ral $Lne nodes are r.o explaL_
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FllUrq 2. The observed vaZues of ilu and ibt nonutlLzsd by the smallest values
st ibt8 for the eLae lXlrsllel 8_lse for the 11 cues &.1yen in Tab].e
II. Under the SleUl_Ctou that the strat£tied eases _ollow curves
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the observatloc8. We flnd that Re/Re a < I for unstably stratified situations, i

r/and that Re/Re a > I for stably stratified ones; this t8 in contrast to the

cosine nodes for which R_/Re o < I tn the stable cases bu_. k > Reo in the

unstable cases (Fig. I). Moreover, In FIg. 2 the values appear to fall on a

1lee vhon plotted as functions of _a, qaln in contrast to the previous case
q

in Fig. 1. From Table IV, ws find that the wavelensth8 La are _ell within the

repotted r•nses In the cases A and B for streets daveZoplng In nearly neutral

boundary layers. The wavelengths in the unet•bly stratified cases F to H are

• i• bit too large, but as noted In Section 3, we expect that the values of La or
L

Lo _r111 be vualler In the unstably str•clfled cases than in the neutral ones.

5. ConcXudln S Eesarks
)

In thls article, we couq)ared the orlent•tlone, vavelengthe, end governing _

par•meter values observed on three cloud street days durlns the 1981 _onTur i!
i

experiment with the threo perallel/theruaX Inst•biiLty roll nodes discussed by
!

Sbirer (1985) in • nonlinear node1 of 8hallow BouesLnesq convection. Two of

these sodas derive euersy from the lowest order cosine terns in the man wind _.
.Y

profLle and the ocher node from the average shear and lowest order sine terse, i "_

No evidence Is found here chat the o_erved e.Loud bands derive their energy _

from the cosine terns, _d_tch were noted by ShXrer (1985) to be associated with

" lsmell _ dapths,
¢

Instead, the roll andes deriving their energy from the sine tent8 of the

!

wind profile appear co SAve qreetnt in 811 parsmeter values, even thouiih ' I

only the Mutra_ly stratified cns_ could be considered in the node1. The

aliraesent is best 14urn the lnversLou _lsht8 are assumed co represent the top

of the roll e.tLrcuXstinns, even when Chet_t Le appreciable imaeCracinn st the

circul4tAons into the stable 14_ar! thLs is consistent with the assumption
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used in the Shlrer (1985) model that the environmental lapse rate is constant.

The sine :odes appear co characterize boundary layers havln_ large Ekman I_i'
depths, and the nonlinear solutions associated wlth these mo,_es would have

L,

appreciable tilt wlth height. Both these features were found in the cloud

street observations.

• The results presented here do not contradict those presented in Br_mmet'

and Grant (1985). They concluded that the rolls on 20 September were

thermally driven and those on 18 and 26 September were dynamically driven,

and thls is consistent with the results given in Fig. 2. Moreover,

Br_maer and Grant _1985) determined that the primary dynamic energy source _
t

for the rolls was that of the cross-roll wind conpouent. As noted earlier,
¢

this would be incompatible with the cosine parallel instability modes for
s

which the roll-perpendlcular ohear component vanishes, but It would be !

coapaclble with the sine parallel mode for which an appreciable

roll-perpendicular vln/_ component occurs. The sine _ode8 can be called i

parallel modes because they are aligned so that the roll-parallel wind shear
!

is much larger than the roll-perpendicular shear and because the Coriolis !,
!

parameter must be included.

HoweverD one deficiency of the Sharer (1985) medel is that there is no ,

representation of a primary dynamic mechanism _ the inflection point _.i

instability _ for extracting energy from the cross-roll mean shear. To study

these inflection point, modes, a crucial requirement Is that more than one

vertical harmonic must be included in the model. This observation, together#

with the results presented here, indicate that to represent completely all

possible roll modes, a low-order model uuet include both the sine and cosine

terms and at least two uvanunhars in the vertical. In this way sufficient

T
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forcing by the ambient wind would be introduced into the model vt8 inclusion Ii_

of all Of the first few terms o_ 8 Fourier expsnston of the aean trlnd ,tort14.

A second deficiency of the present: lode1 is that only the llneer portlon

of the mean temperature structure Is ruolvsd. Since most roll clrculatlons

penetrate into inversions capping the boundary layer, the nonllnear portions

of the moan temper_Car@ p_oflle ought to be important to the development of

the totals. In fplte of the deficiencies Xn the r.resent model, the analysts In .-

chls arcicXe demonsCracse a remarkable agreemmnt between the obnervaclon8 and
•

the CheorecicaX modes deriving energy from ouly a XtmAced pert of the Ran

wind and tsspereCure profiles.

[

- I
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Abstract

The physical relationship between steady sxlsy_etrlc flows that alght be

observed In the atmosphere and in laboratory vessels Is investigated theoret-

Ically. Thls Is accoapllshed by coaparlng both the nonlinear structure and

the _hersal forcing sechanlsas in two truncated spectral models of flow in the

atmosphere and the rotating laboratory cylinder respectively. Under statl-

ca:ly stable conditions, the response of the Internally-forced spherical

aodel (which is developed here froa a sat of new orthonoraal basis functions)

exhibits steady _ehavlor different froa that 1_ the exterually fnrced

cylindrical model. Ywo regions of gultiple steady ooluttone occur in the

cylindrical m_del, under stable conditions, that are not found In the

spherical one. The possible physical relevance of these emltiple solutions is
!

investigated by deteratning their location in par_eter space with respect to J

the _.taselcal _ley-Rossby transition curve. Tba rsoults suggest that the p

wave flow reglne, In an annulus, _ght develop catastrophically whan an upper i

sy_etrlc flow ceases to exist. Furthor auainatlon of each sodel reveals

that study behavior is linked to tba hydrostatic ses,_ptlon and so to the "_,

aspect ratio and basis functions of each eystea. The results suggest that the "'

sumner by u_:/ch regina transitions occur In externally forced vessels night

differ froa those for the internally (and oxteruslly) forced atloophare.

81Enlficantly, Internally forced laboratory vessels are found to have the
a

greatest utility for studies of lar|e-scala sxls_..-natric flow reglnas in the

atlosphere.

t

t
l
I
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_t

- I. Introduction

Theorles of the global structure and _havlor of the atmosphere cannot

L:_ be tested easlly vt, direct e_periaentatlon. Thus, atmospherlc scientists

must devel_p superable replicas, such as laboratory or mathematical models, to

simulate thermally forced motion on rotating planets. If the objective Is to

, • produce an accurate predlctlon of large scale ataospherlc flows, then a.!

detailed replica that Includes the effects of topography, radiation,

cloudiness, etc., must be considered. However, the complexity of such a

detailed model would obacure thorough understanding of the physical

?:i processes that produce the flow. Hence, to gain physical insight Int_ the
|

i nature of atmospheric motions, it Is often necessary to utilize simplified

_I models In which only _ertaln physical processes are eapha_izD_.

'i
! Generally, a laboratory model is considered useful if it produces flows !

-._ that resemble those of the _tmosphere. A co_aon assumption is that _. can

establish the relevance of certain _zperi_entsl results to atmospheric flows ,j

by conslde_Ing the degree of dynaalc slailarlty between the two physical !i

systems. Two systems are dynaalcaliy slallar if we can determine, from the

forces involved, an appropriate set of dlmenslo,_less parameters, s_ailar I
!

values of which describe analogous motions in both systems (e.g., Panofsky and

• Dutton, 1983).

It is tsposslble to devise a couplets, prsctlcal system that replicates

the atmoeF_ere exactly, Instead, _ consider models having governing

• equations of motion that retain at lemst those few dlue.nslonlens ratios

necessary for describing qualitatively important behavior in the atuospbere.

Sxaaples of qualitatively important behavior _ould include the number and _ype

of transitions between flow reg_mse. Since Buckingham's Theorem 8uarantoms

that there are on_y a finite number of ratios frow ghich to choose (L_nshur.

I

IN

I II I IIlI i
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1951), tee are assured that only • flnJte uunber SIU control such transitions.

In the laboratory, 81aple flows have been generated b7 subjecting • fluid |

within a rot&tins annulus to a series of externally imposed variations In

horizontal teaperature contrast and rotation rate (e.g. Fultz etaZ.__.____.,1959).

The annular flows obtained at the critical values of the crucial parameters,

which are usually taken to be the thenutl Rossby nuaber and the Taylor nuaber,

exhibit transitions between the syuaetrlc Hadley regime and the wavy Rossby

reglne, 88 yell as between flows wlthln the Eoesby regina. Apparently only

two fundawntal paraneters are rm#a;d to specify these transitions "
i

qualitatively, althcugh such geouetrlc paraneters as aspect ratio say affect

then quantltatlvely.

Owlns to both the variable orientation of the gravity vector relative to

the axle of rotation and the spherical geometry of the earth, an efficacious
i

laboratory nodal sight be dlfflcult to design. It is conceivable that neither I
f

of these physical aspects of the earth are crucial to the astabllshnont of i '

t'
dymaLtc similarity between a 1_boratory nodal and the atnosphare. In fact,

many investigators tacitly assuno that these two aspects are not cz_clal when

they consider cylindrical laboratory configurations, in vtLtch the gravity !

vector is oriented parallel to the axis of rotation. Intuitively, however. ,.

the rotet*,nS heaisphe-a see_ preferable to the rotating cylinder for i
m l

observational studies, because its 8eoaet:7 uore closely astchee that of the t

earth.

Spece-b_ed experiMntatiou in sicro-arevlty mvlroments offers the po-

tential of usLnj spherical vessels haviq the appropriate orientation for the

body force, Eseently, the Geophysical Y]Luid Flog Cell (GI_C), a bemlspherlcal

shell of dielectric fluid, has been proposed to take advantqe of the sere

gravity mviroument (Hart. 1984). So far, however, various design Ltaltatlou

198G002282-323
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have restricted the _ .'oJected overall usefulness of this particular instruaent

for studies of large scale planetary wave processes arising from the

', Instabllity of axlsy_ecric flows. II

In addition to design probleas, there Is no guarantee that the results

obtained from such a spherical configuration would be qualitatively dlffercnt"

• from those obtained in a cylindrical one. indeed, we might obeerv_ that

similar parameters govern the same types of transitions (e.g., Hadley flows

exchanging stability with Rossby flows, etc.) in both rotating vessels. In

this situation, it is crucial to determine whether the characteristics of the

transitions might change between the stmosphere a.nd the laboratory vessels:

in one system the transitions alght be smooth, in another, sudden. This is

crucial, because funds••oral to the notion of dynamic similarity is the

premise that transitions occur In the replica of interest for the sane reasons

that they occur in the atmosphere. _i

In this study, _m present evidence that both the occurrences of and the |

characteristics of the transitions In a qussl-hydrosCettc nodel, which Is ._

representative of the ataosphare, viii not _,ary quaXltacively with the types

of thermal forcing. The term quJsi-hydrostatic is used because the viscosity _ '
!

term is retained in the usual hydroltetic approzisation. In contrast, ve show _,

that an appropriate ann-hydrostatic sod•l, which As based on the laboratory i

cylinder, exhibits different steady behavior and hence different branching I
|

behavior from that in the spherical me. These results are Seae:al/zed to ,

• the tort•spending physical systems to show thet when modeling the 8tuosphere r

the type o! ther_l forcing is crucial in a c71Lndrical replica, but not in a

_phe'r_._l one. Hence. • lJborstory cyl£nder uust be forced suitably in order

to sc._el adeqtuttely r_ 18r|McJle flow resLI in the atuosphere.

ZI_ _h4J 8n&lysllJj 1Mr_oagJ_Jer ¥grtous CO_bll_tlOIBS Of LMO _undaeot•Z
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types of therua3_ forcing mechanisms: external and Interne1. External forclr_

is applied at the boundaries of a laboratory model. For example, an

externally inposed hori-_ontal teaperature difference is =-_nts£ned in .n

annulus by hnstin_ the outer wall and cooling the inner one, Generally, this

type of theraal forcing must be used also in spherical laboratory models.

Internal forcing, on the other hand, must be applied directly to the working

fluid inside a vessel, However, this uechanlsm is not e_sy to apply

experimentally. If internal forcing if crucial to Nodelin8 *.rensitions in the
{

f

atmosphere, then it should be included in laboratory s/sugar/one, i
|

To obtain the results uentloned above, ve coapare the solu;_o,ls of two !

lov-order spectral ucdels that are truncattd ar the sane level an_ that _re

based on spherical and cylindrical geosetries, respective';. Obviously, this f

is _ such uore practical approach than couparlng either the flows produced in

two laboratory vessels or the solutlons of _vo large mstheuatical uctlels that

describe the two physical systems. Indeed. the laboratory vessels, which *

require considerable resources to construct, st|hi be difficult to use as Har_

(1984) indicates for the rotating hemisphere. Moreover, Large uatheumtical "_

sodela are umwieldy and thereby tupractical for this type of study in which we

eonsXder the transitions between steady state sutions that An many cases are

! 8overued by only 8 small nuaher of parmmters (Shirer and Wmlla, 1983). " i
1

In this article, yt basin by lntrodue|ug suitable fores of th_

hydrodyamt/e equatl,.ns. Utilisinl the ms.its of a recantly developed uethod
!

based oa contact catastrophe theory (ShLrer and Wells, 1982). end anl

appllcstion of Galerkin techniques. N ob£ain two f£ve-couponent spectral

u_lels. The usthod based ou coatact catss:t_phe tbaory huZps us to identify

cruci_ petaustsrs that define _nsa£c s_l_J_ity aid that 8ovot_ the study

states of both physical s_steus. We cboooe spectral undels because the
!
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modeled flows are dominated by only a few spatial harmonics. Indeed, from

_ observational studies using the rotating •nnulus (e.g., Fultz et al.__.___.,1959; [

:_ FowlIs and Xld¢, 1965), we know th•t the spectrum of flows is characterized by '"

_'__. ,udden cransltlons between observed states and hysteresis, which may be '

,_. explained simply by low-order spectr•l models (e.g., Loren¢, 1962, 1963, 1984; i

• _ Veronls, 1966; Vickroy and Dutton, 1979; and ¥ost and Shlrer, 1982),

_ In Section 2, we discuss • new spherical model, which is developed here
p

.- _ from • set of orthonormal basis functions recently proposed by Duttcn (1982).

,!
TL:_se fume'.ions, whi=h are derived by solving a llnearized Ltgenva'ue problem

i_ extracted from _:_- original model equations, directly incorporate important
aspec_ of the ataospheri_ dynaalcs. Inltia_l_ the model includes a_n

internal thermal fot_.Ing mechanis_ that requires the nc_i,:q flela 4_

temperature field to share identica_ ._._enfu,-_._lons (Henders_., i?_2). This

_echanisa is derived from atmospheric observations such as those in Dutton

(197b). We find it _ecess•ry to add _ppropriate terms containing • Hadley _._

. number (Yost and Shirer, 1982) that is proportional to a horizontal

temperature difference that _ght be imposed along the lower boundary, in

order to compare the solutions of the spherical model with those of the

cylindrical model,

i_t " The cylindrical model, which is discussed in Section 3, is a version of

th,_ five-component model of Veronis (1966), that has been modified suitably by

i Shirer and Wells (1983) to contain both a Hadley number and a Rayleigh number

that moasure the horizontal and vertical temperature differences respectively.

The possible physical relevance of tha sultiple solution regions in this

model, Which occur in • statically stable rotatin_ fluid, is investigated by

dete'_ning tha location of their boundaries _n parameter space with respect

to th_ observed symmetric flow-ways flow traas_tion curve. The results from

]986002282-326



326

this section suggest the possibility that the wave flow regime in an annulus

might develop catastrophically when an upper symmetric flow ceases to exist

rather than smoothly via a bifurcation, as one infers from the _-tscussion in

Lather et al, (1977). This distinction is important, because it is essential

to understand precisely how the transition from the liadley to the Rossby

regime is accomplished before we can model properly the transitions between

flows within the Rossby regime itself. This philosophy is in accord with that

of Chang and Shlrer (1984) who sugg._st that, in many cases, all transitions

within two-dimenalonal regimes _st be modeled correctly before the

transitions to the three-dimensional ones can be obtained correctly.

In Section 4, we compare the steady solution surfaces that arise in each

low-order axlsymaetrlc model and show that substantial differences occuc. As

_ntloned above, we find that any comblnation of internal and external the'..'mal i

forcing mecha_i_as in the spherical model, leads to unique real solutions in

statically stable condltions. This result suggests that transitions between

the Radley and Rossby regi_s in the at_-osphare are likely to be smooth. If

both models are forced externally, then we observe L_ao cusps in the cylindri-

cal model, in statically stable conditlons_ that are not found in the spherl-

cal replica. Consequently, in this case sudden transitions and hysteresis

within the axlsymmetrlc flow reglae are possible in the cylindrical model, but . I

not in the spherical one. The different behavior is linked to the hydrostatic

aasuaptlon and so to the aspect ratio and basis functions of each system.

Flnallyp if internal thermal forcing is used in both models, in the absence

of externally /aposed horizontal thermal forclng (i.e., a Hadley _:ber), then

unique real solutions are found in both models in statically stable

condl t ions.

We conclude that an internally forced laboratory veasel would most
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closely model the axlsyu_etrlc flow "_ the ataosphere. Thus, the results

raise a number of questions concer_ _ t._._ ucillty of externally forced
|.

vessels for future _._udles of large-scale flow regimes in the atuosphere. [i
v

!

- i
I
L

4
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2. Axisysmetric flows In a rotating hm_tsphere

From a Bousslnesq version of the Navier-Stokes equattous and the first

law of Chermodynsmlcs, we may derive an InflniCe set of nonllnear ordinary

dlfferentlal equations (o.d.e.'s). To accompllsh this, _ deveXop first a new

set of orthonoraal vector basis functions for the dependent varlables from

associated llnear elgenvalue problems. In thls investigation, the set of

o.d.e, ts Is truncated to yleld a flve-component axlsymmtrlc model that is

representative of the atmosphere. In the flnal part of chls section,
B

obtain the steady soluclone and construcC the resultlnS steady soXutlon (

surface, In anticipation of a coaparlson vlth the cylindrlcal modeX resuXts. _ _

a. The approximate equations for ElobaX axis_Immtrlc fXow !

We choose to slier an approzisate set of larSe-scaXe Bousslnasq equations

given in Dutton (1982), bY laposins quasi-hydrostatic conditions and by

assumlnS Incoapresslblllty. Thls sTstem can be w_Itten as

_N
_T- + -_" vv_ - - va(eo,') - _ _ vs + v • vVva , (2._) i

i,
a(eo") e' k_i" 8 _'- + V " vVv . (2.2)

,. _z _o

° t

t
O' e_o 0' v (Ase) O'

L C )+ • vC )+ _ - ,q +v. ,:vC) (2.3)
i

• i
I

• va+_-o , (2.4)V

in ,MXch the vector veluclcy As

v- v_+wk- _ +v,. +W . (2.5)
" l

1
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The Bousslnesq approximation was applied by expanding all thermal

variables e, w and P in terms of perturbations superimposed on a reference
I'

state that was taken to be isentropic, isothermal, hydrostatic and lsosteric; [i

I

f,

that is, we write # - _o + • Follovln8 the technique utilized in ¥ost and

Shirer (1982), we write the perturbation potential temperature field as a sum

of two terms: one dependlng on the time-independent imposed vertical tem-
w

perature difference, which measures the static stability of the fluid, and the

other on the thermal response 6 of the fluid to the imposed heatlr_ rate Q.

- Thus we may write

e - eo + a.e[_)+ e . (2.e)

In (2.1) and (2.2), the pressure gradient term has been written in terms

of potential temperature e and Exner's function w. Dissipation in (2.1)-(2.3)
!

i is manifested via the eddy values _f the coefficients of kinematic viscosity v , ,

_ and thcrmometrlc conductivity _. The thermodynamic equation (2.3) has been

slapllfled by normalizing the perturbation potential temperature by So. The

forclng Q represents a combination of radiant and latent heating rates.

!Since we choose to represent (2.1)-(2.4) in spherical coordinates, the

horizontal basis functions become the usual spherlcal harmonics. If _ is _

latitude, _ is longitude and z is radlal distance, then the gradlent operator i

V and Laplaclan operator V2 are i

• l _ + ;I (1 -a.2)1/2 av -., ,(1 - ,2>z/2 _ + .kL,, . <2.7)D

atui

= - + + -- (2.8)
a2(l t,2) ;I).2 az ;)s2 '
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where . = sin + and a is the mean radius of the earth.

We elect to switch from equations in terms of the pseudoscalars u and v. _,

co equations in terms of true scalar variables that are Independent of the _,

coordinate system, namely the vortlclty C and the divergence D. We shall see

later chat this presents no particular problem when determining expansion

coefficients for u and v because they are determined from _ and D via

recurrence formulas and truncation relatioes.

With the Helmholtz Theorem, we write the horizontal velocity field as

_H " _ x VH$+ VHX , (2.9)

in which $ and X are the usual scream function and velocity potential,

respectively. If the vorticity and divergence are defined as _ = VH2$ and

D = VH2X, then (2.1)-(2.4) become

,, v" i
v

I

VH2w- 2_(._ - _) - +_v_D , (2.10) i

!'£
___ww + vV2v (2.11) '

aw
D +_- 0 , (2.12)

I a _ I ,v ao. _ 2.[uD+ v+ a _ (Vc) + v a aU ;s a] + vT2C , (2.13)

and

V

I

In (2.10)-(2.14). w have used the scaled u and v velocity coIpo_ente i
l

.... _._ -_ _ _._i_
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u - U/(1 - _2)1/2 and v = V/(l - _2)1/2 to avoid the singularities near the

poles (Machenhauer, 1979,, and we have invoked axisymmetric conditions by i,I
eliminating longitudinal derivatives. In addition, we simplified (2.10)-

(2.14) by introducing a Prandtl number P - v/_:, a number proportional to a
r

Rayleigh number

% - - C-o) % , (2.15)

and the definitions w - SoW' , x " 9 /0 o and q = Q/(OoCpTo).
" _

To complete the formulation of this problem, we enploy boundary
i

conditions over the spherical spatial domain

Ds ( x: - 1 < _ < I, 0 < z < ZT} , (2.16)

of the sxlsymaetric mdel, where ZT Is the upper boundary. Appropriate i

boundary conditions are i 1

l

w " 0 at z = 0 and z - ZT , (2.17)

i
_w J
--= 0 at z = 0 and z " ZT (2.18) I_S '

. _ - 0 at z - 0 and s = _ , (2.19) Iand

_--_- 0 at z - 0 and s - ZT . (2.20)_z

Hence, the boundary value problem for uLsyunetric flow on 8 sphere consists

of the equation• (2.10)-(2.14) and _he boundary conditions (2.17)-(2.20).

b. A fIve-coapousnt aztsyumetrtc model i

ge •in to formulate • set of baits function• that couple the dependent '_

• _m_v" J_'_ ,'
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variables in (2.10)-(2.14) so that fewer expansion coefficients are needed to

repres6nt the flow. In general, this presents no uathenuatlcal difficulties

when appropriate linear eigonvalue problems are extracted froa the three-

dimensional system (2.1)-(2.4). Indeed, Higgln8 (1983) showed that the

velocity field v and pressure field w could be coupled in this way and that
.e

the resulting spectral equatlons depended on only L-to sets of scalar

coefficients. However, we ignore zonal variations in the axlsymetric model;

thl8 introduces some problems in coupling _ and D in any chosen linear

problea. In this situation, we are obllged to solve three separate linear

probleas. Three suitable problems, extracted from (2.10)-(2.14), are solved

in detail in Appendix A.

The solutions to these problems produce spectral expansions that portray

the spatial and temporal dependence of each variable in the exlsyunetrlc

model. When these Fourier expansions, given by (A.21)-(A.23), (A.29) and

: (A.32), are substituted into the model equations and Galerkin techniques are

applied, then we obtain a coupled model havin 8 only three sets of spectral

coefficients. This model i8 found in RiSgin8 (1983).
',

i In this investigation, an appropriate truncation of the coaplete spectral
i systeu suet retain different terns that represent nonlinearities, rotation, '_;l

jJ and appropriate vertical and meridional thermal parameters. In addition, the "

truncation should retain the fewest nuaber of comps•ants that are needed to

nSCtitse the information in the model. Finally, It unit possess enough

]
external control parameters to describe sdoquately the steady state solutionsI

t that are of interest here (Shirer and gall|, 1983).i

aacoSuizinS these facts, we _upose a undifiad form of a triangular trun-

cation ou the spectral expansions (Ao21)-(A.23), (A.29) and (A.32) for w, D,

w, _ and _ respectively, in which all colpous•ts with • > M, • > N and m > •
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are set equal to zero, so that?.

\

_ N a_n
D " _ _ am P --- (2.21)

n-O m,,1 n n _z

.11 J Oft

H N M

. • " _ bO p 0 _-0 bm P _: (2.22)n-O n n tn +n I=1_ n ,,. '

(; = _ cm Pn mn,,.O ml n tn " (2.23) _,

)

The expansions for the auxiliary variables are (e.g., EllMen el: al., 1970)
"4

÷4
H��|�[_lN

m _

u- Z y _ % % , (2.24)
%

4

and ._

V - - vm Pn -- (2,25)• r
n

n,.OP1 #

o !

The coefficients and Va are abbrevlat£ons for the recurrence relaglons

° -!
1 c a 1 mu" = a(- _ an +n n-1 _ Jn+l cut.l) (2.26)

@

and

VII 1 .° " aC;J,,*,'-1 "/'--1n+ x J,,H*_I] , (2.27)

where Jn = [nZ/(4u2 " I)]I12" Hence, If Che ezpauslon for eiChor C or D Is

..... . _ _
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given, then the series for U or V is easlly computed. We note that the

spectral expansions for U and V extend one degree higher in n _h_n do the

expansions for _ and V. Thus, the number of _n and Van coefficients Is Isrger
m m

than the number of c and a coefficients for any truncation; thls leads to a
n n

closure problem for the cases n - 0 or n = N. i E11asen et at. (1970) showed

that specific truncation relations resolved thls problem. Later Orszag (1974)

and Byruak (1975) showed that these relations tmre equivalent to boundary

conditions at the poles for the horlzontal velocity fleld. Rather than

present an extensive description of these relatlons, _m glve thee -_..e,

necessary following E11asen et al. (1970).

By truncating the series (2.21)-(2.25), we 11mlt the range of the basis

functions to o_ly those large scales at whlch energy contributions are

glgnlftcant. The mallest truncation available that maintains nonlinear

interactions, Corlolls terms, and energy conversions contains flve spectral _,
:! ii

i cosponents. Horeo_er, if _e choose the truncation point at H = 2 and N - 3, _

I then (2.21)-(2.23) reduce to

!
I

_W21 "
D " e21P2 - _ ' (2"28_'.I

" °I
t

bl 1
0 P2 0'_"-u PO'O+ b2 '2 '

(2.29)

i and
t

1 2 2
! q = cl Yl 11'1+ cl Yl _1 " (2.30)

!

• _ , ..1%e m
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We note that even and odd modes have been selected from (2.21)-(2.25) in
||

an appropriate way, In order to obtain (2.28)-(2.30). In general, zonal wind Ii

components, vertical velocities, temperature, and pressure exhibit even

symmetry about the equator while meridional wind coaponent_ possess odd

symmetry. Thus, (2.28)-(2.30) constitute an adequate truncation because the

. vorticity expansion exhibits odd symmetry while all other expansions retain

even sy_aetry wlth respect to the equator. Finally, the choice of vertical

basis functions in this case was restricted because we used the hydzostatlc

approxlnmtlon.

The auxiliary varlables are given by

1 pO t_+ 1 p2 t_+ 2 2 2 P2 t_ , (2.31)U - U0 02 Uo PO tO + 02

and

1

1 _W_ 1 P3 ' (2.32)v - - vi r I _- v3

In which _ne coef£1cients U_ and Va are given by (2.26) and (2.27). If U hasn

an even 14titudlnel expansion, V has an odd latitudinal expansion, and the

longltudlnal wavenuahar t equals zero, than the truncation relations ._

. N-1

. - 1 _ ((2n + 1)1/20 ) , (2.33)UN+I (2N + 3) 112 n

and

Q

6-2

VN = - I l)I/2Vn(2. + z)z/2 ]_ ((2u + ) , (2.34)u,.1 I

imply that

1

U21 " UO 2 U2 t - (_)1/2 1 (2.35)
"7 ; U2 ''7 ; v3. V1 "

%
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Hence, we observe that the model maintains Cvc, rather than four, zonal

velocity components and one, rather than two, merldlonal veloc'.ty components [

as well as two normalized potential temperature cosponents.

Substituting the exFansions (2.28)-(2.32) into the model equations

(2.10)-(2.14), and utiltzlng the orthoncrmality property of the basis

functions to elialnate the spatial dependence, we obtain the five component

model

•I _121 1 2 21 2 11 1 01 20 _ 1OJ12 - vP.22 ¢E22a2 = Dll 2 C1 c1 + C1 a2 + b - v), a 2 (2.36)

1 I 1 1_I01 I 0 + qo vlP , (2.37)= F220 a2 b2 - b0 F0

" - F202 a_ b 0 - b 2 r 2 v/P , (2.38) i

y
I

"2 _112 1 1 12 1 2 2

c1 = - 82i I a2 c 1 - RJ21 a2 - vA1 c1 , (2.39) ;

• 1 _121 1 2 1 1
c1 " B211 a2 c1 - v_ 1 c I , (2.40)

in which the overdot denote_ temporal differentiation. "_

It is important to note that the basis functions for _ are a sultable set i
I

of functions for representinS the net heatins field q (Henderson, 1982). Thus

the theraal forcins field and teupezaturo field are matched in (2.37) and

rupectively. Xn what follows, tm refer to this type of thamal forcins

mechanism u internal. If m define the horlsemtal (vertical) baatlag rate to

be tim coaponent of bestial that chanle8 in the horlsontal (ver*'cal), then q_

Is 8 horizontal MatinS rate end _ /JJ • _trtit81 h_tinS rata.

%
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c. Steady states

To simplify analytical cslculetlons of the steady solutions and to

facilitate the model comparisons in Section 4, _ r_rlte _,e evectral I_
u

components as

1 0 I

xI - a2/ZT , x2 - b2 , x3 " b0 ,

m

2 I

x4 - cI , x5 - cI . (2.41)

. By reicallng tha spectral coaponent _ with the domain helght, _. modify the

definitions of the interaction coefficients which appear in (2.36)-(2.40).

For coL,venienc_, these definitions 8ppear in Appendix B. .hey allow us to

rewrite the spectral syete_ 8_ i

xi " Ol x4 x5 + gl _ x4 - v (E 1 + ),1) x 1 + g E2 x2 , (2.42) i

. p-I
x2 " - FI xl x3 + re xl + qh v x 2 rI , (2.43) _' i

. p-l
_c3 " F2 xl x2 + qv v x3 1"2 , (2.44)

_c4 " - B2 xl x5 - _ J2 xl - v x 4 )'3 ' (2.45)

i

x$ " B1 x_ Y4 " v x$ _2 ' (2.46)

in whLeh
qb

r - I ' (2.47)8 •

and qh and qv see th boris•urn1 and vertical hearths rates, respectively. It

ie easy to _how t_t the •ready solutions to (2.42)-(2.47), hereafter referred
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to as the S (_ spherical)model, are governed by a seventh '_gree steady

polynomial in Xl, given by

d7 Xl 7 5 x15 + d4 x14 + d3 xl 3 + d2 z12 + d1 x 1 �do = 0 . (2.48)

The expressions for dr, i - 0-7, ax_ found in Appendix B.

t Free Shlrer and Wells (1983), we know that a certain nuaber of|

i
independent external parameters are Qeeded to d_ecrib, coupletely all classes

of transitions aeons the stationary solutions of (2.t8). If these have _een
1

identified methematically and interpreted physically, then the predictions of

i the model are lusensXtlve to snell errors, which are always present in
x

observations, and are therefore experlmlntaIIy applicable. In fact, Shlrer

and W_ll8 (1983) show that in many cases the noaber of parameters required 18

given by the saxlatm possible l, ltipllcity of the real roots. However, the

simplest case of roots having multlpllclty two produces the set of fold

points, and thls singularity set specifies fully the b_anching character of

the nonlinear molution8. Thus, lu order to find the values of the external

parameters uparatlng unique free multiple oquilibria, it is logical to begin

with a search for the fold point sluaularltles. _..

When uverel parameters are present in the model, than tim fold pointaI
@

! fern a curve in parameter space that delineates tim transition rqloas u

funs,leas of the external parameters. I tim $ 804101. there are oevera_ ways

i to displ_ty tim steady solution surface. As we shall see in Section 4, tim .
I

! qualitative behavior of the steaJy states /a tim S model, in accord trJLth that
.i

of tim _olutio_ to tim C (_r cylindrtcel) model of Seetiou 3, is independent

of mpeet ratio A, Prandtl mmimr P, and rotation rata f. Therefore, any

appropriate choice of A, P _ f produe.n roqqKhly r_t sam solution surface.
i

F/I. I LUuatrete8 the ml_tiocehip borgia the folded solution surface

-- " -m _ -Imme_,- ....... "," "" I
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Fig. 1 A schematic diqrmm showtq the relationship betveen the folded
solution surface of the $ model and the elngularlt), set 01 in the
qv - qh plane. For values of qv " qh inside 91, th:se distinct

, reel roots of the stead)' state polynomiL1, exist, but for values of ";
qv sad qh outside 91, onl), one real root expiate. In this case r a i '
was chosen so that the scale height Is 8 Int. It i8 important to _ ;
note that quaZitative stead)' behavior Le independent of the aspect L.
ratio At Prandtl number P and r_tatton rate 9 (after ¥ost and Shlrer,

• 1982).

............ l!
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of the S model and the singularlty set _I, that divides the thermal parameter

plane. This set consists of fold points and a cusp point, at which three I"
ri

solutlons meet, Three real solutions occur for parameter values inside _i,

and one real solution occurs for values outside it. As Fig. I shows, the

steady states of the S model have the form of a cusp surface.

Four classes of axisymmetric flow occur in Fig. 1 depending on the sign

of the vertical heating r,_.te qv. If qv > O, then the statically stable fluid

given by r s < 0 is being forced in the vertical and for sufficient heating we

obtain a rotating Rayleigh-B_nard problem. If qv < 0, then the static i

stability is being reinforced and the horizontal heating qh leads to an

atmospheric _adley problem.

As is apparent from the figure, t_. steady states form a cusp marface for !

only positive values of qv. This implies that multiple real solutions can
|

occur in the S model only when the fluid is forced in the vertical. Moreover, !

these convective flows may be either direct or indirect, depending on the sign

)

of the product qhXl • A thermally direct cell. in which wa_, fluid rises and !

cold fluid sinks, satisfies qhXl > 0, whereas, a thermally indirect ceil, in i

which warm fluid sinks and cold fluid rises, satisfies qhXl < O. As Shirer I __
J}

and Wells (1983) found, sudden transitions in this regime occur between direct _

and indirect circulations of equal intensities as the value of qh is varied. , i

i

If qv ( 0, then unique real solutions occur for all values of the thermal t

parameters in this region, and tbera are no transitions nong the steady 1

states. Since the fluid is stably stratified, motion occurs primarily in _

response to qh" In this situation, only therlally direct cells are possible

since qhx I ) 0 everywhere.

Thus we conclude that for rotating a_sylmetrtc flow the internally t

forced S s_del i_t_ts sultiple real steady solutions only when forced _t
!

a
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sufficiently in the vertical. This result is in contrast to the one obtained

for the exterually forced cylindrical model in the following section. We will

explain the laplicattous of this difference in Section 4. !

o
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._ 3. Axisymmetric flows in an annulus

A simple uthematical model that is representative of a rotating

cylindrical configuration can be developed from a version of the

two-dimensional shallow Boussinesq equations used by Lorenz (1963). The

version we consider is one that was originally studied by Veronis (1966), who

added the Coriolis parameter and a meridion•l velocity component to the Lorenz

system in order to study the rotating Rayleigh-B_nard problem. In addition,

we utilize the results of Shirer end Wells (1983) who modified Veronis' system

by adding appropriate terms that contained a parameter called the Hadley

number (Yost and Shirer, 1982) that is proportional to an externally _Japosed
g

horizontal temperature differs, ce. As in the S _del, their model includes a

sufficient number of parameters to capture the cruciel elements of simple

steady sxisymmetric flow and to unfold completely the physical system.

In this section, w discuss the five-component cylindrical spectral model I
i

and then illustrate the corresponding steady solution surface. The.se results !

are used in Section 4 when we compare the axisyemetric flow in both models.

In addition, we attempt to determine whether the multiple solution

J
regions that occur on the 8tatically stable side of the thermal parameter

plane (i.e., r < O) in this model are linked physically to labor•tory flows.

i
We investigate these solutions by determining their location with respect to • )

i
the symmetric flow-wave flow _r_nsttion curve that was obtained by Fultg

et el. (1959) for • rotating annulus. The results are suuestive of •

physical link between the boundary delineating regions of one and three

solutions and the observed _,_ylmetric flow-wave glow transition curve. In

addition, we deduce • possible explanation go_ • transition between upper and

lower symmetric flows. .)
i

ThUs results have • significant implication on the manner by whlch rho . i

, _1
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wave flow regime might replace the upper symmetric one: whether in effect by

default when an upper symmetric flow ceases to exist or by a bifurcation

originating from the loss of stability of an upper symmetric flow, In the !
|

latter case, the problem might become considerably more difficult if, for

example, different solutions within the wave flow regime were to bifurcate

from different possible upper symmetric flows. Thus it is crucial that we

determine the physical significance of these results before attempting to

model the transition sequence from the steady, axlsymmetrlc Hadley regime to

the temporally periodic Ro_sby regime.
,+

a. Steady states of a five-component axisymmetric model

If the Coriolis parameter f, a meridional velocity component v, and _ i

appropriate terms containing the Hadley number h are added to the Lorenz :,

(1963) system, then we obtain i

i
+

_v* A2)-I _
3 925* " - K($*'V2$*) - f* _s-_ + P(1 + 945 * _

+ P(1 + A2) _ + P(1 + A2)h , (3,1) _ :

-_ - - K(**, v*) + f* _,,, p(1 + A2)-1 _Zv* , (3.z) _

3e* {
- K($*, 0") + r _+ h_+ (1 + A2) "1 _2¢, (3.3) "" = _x* 3s* " " i

+i

+
The parameters in (3.1)-(3.3) are defined below. This system is considered in ,_

o more detail in Shlrer and Wells (1983). The dimensionless variables are ;_

denoted by asterisks or tlldas; the velocity components satisfy u* = _$*/_z*

and w* = - _$*/)x*. From (3.1)-(3.3), _ can develop tn appropriate low order

model that is based on the geometry of a rotating annulus or d4.shpan. The

I

1986002282-344



'I

344
, i
i

i s,i

steady solutions of thls model can be coipared with those in the S aodel of |l

I Section 2.
[

i Yost and Shlrer (1982) modeled Irrotatlona! aglsyuaetrlc flow in a

rectangular domain by imposing external teaperatu_e differences _zT and AxT

J
• between the upper and lower surfaces and the lateral boundaries respectlvely.

i We follow their approach and choose the domain 0 < x _ < w, 0 < z" _ w. Hence

! the temperature field becoaes

i - _o+ li.I(_) + A,<I + o , (3.4> :
7

where TO is the value of T at (x*, z*) - (0, O) when e " O, and e is a

perturbation that vanishes at the top and I_ttoa. The Hadley _ber h is
l

defined here by i

A2 '
h - - r A-"_ ' (3.5)

z i
1

In which the noraalized Rayleigh number r = L/it; the Rayleigh number I and _.

critical Rayleigh number Rc are given by

!i,.<
-1 -1 -1

it - - g AzT H3To v K , (3.6) i

and " i

i c - (1 + A2)3,4,t'l • (3.7)

Other d/_nslonlesl para_terl in (3ol)-(3.3) are the Prandtl nuaber P = v/_,

the aspect ratio A - H/L and the Cortolll parmter

fit .. flliw-2 -1(1 + &2)-I , (3.8)

%',
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where H is the domain height, L is the domaln width, v Is the ¢_efficlent of

kinematic viscosity and _ is the coefficient of thermo_tric conductivity.

. As in Section 2, we aim to deduce the smallest spect_.l system in which |[I
[J

, each variable _*, v* and 0* occurs somewhere in a nonil._ear term and in which

; rotation and appropriate meridional and vertical thermal parameters are

preserved. A flve-component model (after Veronls, 1966 and Shirer and Wells,

1983) that meets these criteria is specified by

L,

' _* /_ Yl sin x* sin z*- " , (3.9)

9" ° /2" Y2 cos x _ sin z* - Y3 sin 2z* , (3.10)

* -- cos z*+ Y5 sin 2x _ (3.11)v " -/2 Y4 sin x* .
!

i
!

_, After substitution of (3.9)-(3.11) into (3.1)-(3.3), uultlpltcetion by the

proper basis functions, and integration over the domain, we obtain the i
t

five-component C model
: i
t "

Yl - PYl + PY2 + f*(l + A2) "1 Y4 " 84_ Ph/w 2 (3.12) ;

. i

Y2 • - Yl Y3 + rYl - Y2 ' (3.13) !l

" Y3 • Yl Y2 - bY3 " 16_ h(3w2) "1 Yl ' (3.14) _ '!

Y4 " - Yl Y5" f'Y1 " PY4 ' (3.15)

Y$ = Yl Y4 " Pb A2y$ , (3.16)
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in which b = 4(1 + A2) -1. It t8 important to note that the odd vertical mode
t

was selected in (3.9) in order to ensure that an Inhmmgeneous tern, I I
U

representing the horlzontal heating, occurs.

The steady solutions of the C aodel are found by the same method that was

used for the S nodal. We obtain a fifth degree polynoalal in Yl, given by

5 4 g4(ft)2] 3Yl + gl h Yl + [g2 + g3 r + Yl

+ g5 h yl 2 + [g6 + g7 r + gg(f_) 2] Yl + g9 h = 0 . (3.17)

The expressions for Y2 " Y5 and gl - g9 are found in Shlrer and Wells (1983).

As in Section 2 t_ deteralne the fold point singularities, at which two

solutions meet, froa (3.17) because we are meinly interested in comparing the
i

basic nonlinear structures of the steady solution surfaces in the C and S
t

sods Is. t

a i
For a specific fl_Id in a given vess_l, the control paraaeters in the C |

model are r, h and (ft) 2 . Moreover, we are willing to change the fluid or the

vessel in any way that sight be necessary to astch the condltlon8 in the |

spherical configuration. We solve (3.17) for r to obtain the steady solution I

surface given in Fig. 2. This surface has been constructed f=- a

repreaantatlve value of (ft) 2 that sight be used i_n laboratory studies,

although qualltativa steady behav:or is Independent of rotation rate. The

relationship between the folded solution surface and the singularity set Is
!

the s_ as that in Fig. I; it Is a cusp mparat£ng regions of one and three * !

stendy _olutions.

Both clause of azisymmtric flow also occur in rig. 2, but h_re _tch i
T

clsss i8 defined by the sign of the external temperature d_fferenee in the
|

vertical 8_tvea by the noru_isnd layle/ah mmbar r. In F_I. 2_ the st.ady
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C MODEL

F/41. 2 & scheaatlc dLtegraa showing the relatioushlp between the folded
solutlon surface o_ the C sods1 and tkz slnsularlty set QI In the r-h
plane. For values of r and h Inslde QI, three dlstloct real roots
of the ste_dy state polynoalal exlet, but for values of r and h
outside QI, oo17 ouo real root exists. Uere we have chosen s
rotatlon rate fl - 0.05 s -1, so the two cusps In stable stret£ficatlou
appear nut r - -$9. It is haportant to note that qualitative steady
behavior £s independent of the aspect ratlo A, Prsndtl nuaber P and
rotation rate Q (after ¥ost and Shlrer, 1982).
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states form a cusp surface when the _£uld is statically unstable and r __ 1.

If we compare the orientation o_ the _es In the r - h thermal parameter plane I_

[/of Fig. 2 vlth those In the qv - qh thermal parameter plane of Flg. 1, then we

observe that the parameter pairs (r, qv ) and (- h, qh ) lead to qualitatively

slmllar branching behavior in the respective models. Thle couclualon can be

supported rlgorousty by applylng a theorem of _tather as discussed In Shirer

and Wells (1983). Thus, both the C _odel and the S modet prod,_ce the same

qualitative steady results for rotattnS R_yletgh-B_nard convection.

However, if the value of .- i_ negative (i.e., for statlcatly stable

conditions), then two new cusps appear near r = - 59 for Chls rotation rate.

Horeover, as the value of (f*)2 increases, the magnitude of r, at which these

cusps appear, Increases. These results _re obtained first by ¥ost and Shtrer i

(1982) for the case (f,)2 . Y4 " Y5 = O. They found that horizontal heating i

of sufficient magnitude, under 8tatlcally stable conditions, leads Co suttLple }
!
r

real steady solutlons In the C modet. But In the corresponding region of the

,

S model (FIg. l) these cusps do not appear: there 18 onty one steady state, t

This Is a slgnlflcsnt qualitative difference that we investigate

further. Since the fundamental physlcal cause of these d/fferent steady

results cannot be ascertalnmd from the topolosy of each steady solution

surface, we uust examine the C and S models directly and in more detail. In "

- t
particular, _ ,,,st dmteralne u4_sther the number of steady solutions under 1

statically stable conditions Ls related to tho thermal forcing, geometry, or

sores other aspect of the spectral mc4el. In this way, w can outline also the io

possible consequences of using either conftEuratton for studying the symmetric

flow- wave flow transition In the atmosphere. Prior t_o thts discussion, we

examine qualitatively sam of the links beUMen the maltlple solution rngLons

4
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in the C model and the usual symmetric flow - wave flow transition curve _i
obtained in observaclonal studies.

!

b. Comparison with observational etudles

The possible physical connection between the multiple solution re&ions

thac arise in the C model (for r < 0) and in laboratory flows has not been

investigated previously. Thls new set of cusps, which first occurs in _he

Irrotational convective situation at r = - 26, is of physical interest because

. now molciple solutions in a stably straClfled fluid are possible for

sufficiently large horizontal heating rates. Mere, _e investigate whether the

location of three _ultlple solution resiona m18ht play an important role in

the transition sequence froa the symmetric flow regime to the wave flow regll

i_ alla_nulus.

To simplify a comparison of steady solutlonm in the C model with

observations from laboratory studies, we radeflne the (f_)2, p and h

paraMtsrs as

(f,)2. (l +A_) (_,)z (3.le) t
A2 '

k

p*
P -_ (3.19)

t

h - (b)l/2Ba • (3.20)

Wlth (3.18)-(3.20), _ can sllalnata any apparent quslltatlva dapsndence of

the sultlple solution r_glons on ths aspect ratlo A and tha Prandtl number

P, and thereby produce more universal translt£on curves. If (3.18)-(3.20) are

%
_4
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i
sabstltuted Into the steady polynomial (3.17). then we have |I I

IJ

, 5 Yl4Yl + Jl Ha + [J2 + J3 r + J4(F*)2jyl 3

yl2 J8(F*) 2+ J5 Ha + [J6 + J7 r + ]Yl + J9 H_ - 0 . (3.21)

a

The definitions for it' I = 1-9, are provided in Appendix C.

For this comparlson, we utfllze Flg. 96 of Fultz et el. (1959). Their

diagram provides the boundary between ;he symmetric flow and wave flow regimes i
and the boundaries separating the different wave forum In an annulus. The

dlsensionlese parameters on the abscissa and ordinate of their diagram (see i :

Fig. 4 for a simplified version) are a rotation parameter

-I
(G*)-I - b _2 g (3.22)

a_d the thermal Rossby number i

RoT " g¢H AxT [2_2b(b - a)} -I (3.23) !J

respectlvely. Here, ¢ Is the coefficient of volume expansion, H is the depth 1

of the fluld Layer, b Is the mxiaum radius at the top surface of the annulus _.,
and a Is the Inner radius of the annulus.

It is /_?ortant to remember thet both (G*) -I anl _r* depend on _2 and !i
AxT. To Isphulze this fact, _ revrite (3.22) and (3.23) In the fore

(

(Ge)"l - m2 (3.24) .

(_),. j Ax_ ,-2 (3.25)

whe_ H = I_ "1 and II - _H(2b(b - a)J "1. t

1

.!

• m ---
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A close,examination of the regime diagram obtained by Fultz et al. (1959)

reveals that the values of AxT and AzT are nearly constant along the lower
t

portion of the transition cur_e, but the value of R2 is not. Hence. from

(3.5)-(3.7) we conclude that the values of the Itadley and Rxyletgh nuabers are

constant along the seam portion of the curve. This is a valuable observation

• that will simplify considerably the coaparison which follows.

The control parameters (F*) 2, tta and r in the C model can be written as

• (Y*) 2 - JO2 (3.26)

Ha - KA T (3.27)
3[

r - I_ Z (3.28)
g

in which i

J 4H4 A2[(1 + A2)3 4 2 ]-1" w _ , (3.29) i

L - 10i3 A2[To w(1 + A2) 3 4]-1 , (3.31) t
and b - 4/(1 + A2).

Frou (3.26)-(3.28) we observe that the problea is reduced to a couparison i

of the locations of tim fold points in the (AsT , AxT, 0 2 ) - space of the C

uodel with the transition curve observed bY Fults at .1. (1959). We note that _ .
-

the xepoct ratio k and Prandtl number P* frou the C uodel, have been fixed at

the values that rare used to construct Ftl. 96 in Fults ot -I. (1959).

&lthough the location of each cusp in the C uodel is descriha_ by two

fold point curves, at vhlch trauitious betveeu flow rejimes and hTstsrasis
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i are expected_ ice location Is speclf'-ed else by • cusp point (see Figs. I or

2). At such • point, two fold point curves meet tanSeutJ.ally an,/ three real [
!

soluC J.one coincide, tJ

We know that • fold point curve can be specified b_ two parmmtere. In a

three-parameter preblea, an thle one is, thlJ curve become • r,urface, For

the C model, the8 surface resemb)ee a wedge, am _lig. 3 illurtratee

8cheutically. Th_ wedge con•lets of two _[mete of fold points that met

along • curve of cusp points. As we 8h811 see, the cusp point _rve i4 marly

• in the C mdel.
independent of RoT i

In the C model, both the horizontal temperature differencJa AxT and the
i

t

vertical tenp*.rature dif£erence AzT are laposed externally. In the annulus a
-m

value of 6x T is iapoeed externally between the inn...r and outer walls, but the

vertlcal temperature difference mast be inferred by ueeeurlnig the averaige

value of 6z T vl• theruocouples pieced in the working fluid. Iknca, w =dight !:

expect to find • difference between the observed and the calculated values of
[

• 6zT in the coaparieon vt_tch fellers. If the c81cu]_ted and observed values of

both AxT and _2 match, however, then we are obli|ed to compare the calcu!sred

vaZuee of AsT with the nearest tonsured value avaL1ab/,e. The usasured values

of AzT , thet correspond to the points ind4-csted by _terisks ou ]riig. 4, are _. ',

in Teble 1. Th_se vel,_ts wre obtL1Lned by using the definitions in iigivn
y

Irults et .1. (1959). " i

Given • cusp point (r, i_)c, (F*2) c - emmt. f=oB the C m_el (here tim

suhecrtpt c denotes a cusp point), w earn detenttne the eorreepadinll values . ,

of (AIT, AxT)c for gc 2 - coast, frou (3.26)-(3.28). If w substitute the

vsluee Of (AIT)C end f_c2 int_ (3.24)-(3.2b), then the eorreopoadLull pint

((G*) "1. loTS) c can be calculated. This pint my be plotted directly on the

re•ins dLtLqrau of lhL]Lts etsl.__.__. (195@).
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• Fig. 3 A schedattc of the slngularicy set surface [or a statically stable
stratification in the C node1. Cross sectlons through this surface

are siren for r = const, and a_ons Yr. The axes used here sre the "_
sane as those in Fie. 4; note that the r-axle ts skewed wlth respect
co the other _o 8xes, noc pert_adlcular to them.

e=

.... .._........... _.,.
_- |

1QRRANOOQo QmA



Fig. 4 An illustration of the location of the fold po£ute (thin solid serves)
for the C model v_th respect to the observed mtr£¢ flov - _ve
flov transition (thick solid curve) from Pig. 96 of I_I_ et81.
(1959). FoZd polar curves are shown for cases tu utLtch r - re .
(curves A, B) and in which r is varied co follow =ibmtrend in
observed values aZou8 the upper port£en of tbe transition curve

" (curves C, D). Cusp points from the C rode1 are represented by a
dotted line, guZttple solutises occur tn the et/Rted ceg_.ous.

4 Asterisks denote locations =ton8 r_a trems£tiou curve uber_
- meaaurenent:s of the vmrt£c_lL temperature dLtfferenee4i4T mere avail-

able. The par•rater•, v_tch hey• the mum valuse I Chose in Iq41. 96
of i_lts et a].... (1939), _jpLfy (:oaxLtLt£ou8£u • taZ1 mmulue¢ depth
13 ca, In_er red£us 2.5 oR, outer radLtm 4.95 m, kL_mlCtc viocoo£ty
9.6 x lO'7n2s "1, them•rattLe conduct£v£ty 1.4 x lO'7m2s 1 umm

" water temperature 21"C, eoetfLe.teu¢ of velum ezpmmiou 2.5 x 10"4
.C-I.
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Table I. Observed paraaeter values at the four uterlsks on F18. 4
(starting from left).

altertsk (G*)-I RoT* asT(K) r h

1 2.7 x 10 -3 8.5 x 10-2 0.55 -3.4 x 103 2.5 x 103

• 2 2.6 x 10 -3 1.05 x 10-1 0.63 -3.9 x 103 3.2 x 103

3 4.9 x 10-3 1.6 x I0-I 1.51 -9.4 x 103 8.8 x 103

4 1.i x 10-2 2.0 x I0-I 5.16 -3.2 x 104 2.4 x 104
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We repeated the calculatlon described above for the entire range of

rotation rates conslder_d on Fig. 96. The curve of cusp points that results

is deplct_d by a dotted, nearly straight llne on Fig. 4. In Tab1_ 2, we give

the values of each of the param_.ters for the three cusp points indicated on

Fig. 4. In what follows, we will be interested priuarily In _-:p point II,

which occurs where the cusp point curve and the transition eurv= _nteraect.

The fold points, associated wlth cusp point II, are obtained In a similar

aanner as that outlined above for the cusp points.

Because the vertical temperature difference AzT is not included as a

parameter on Fig. 4, we choose to calculate the fold p_:=_.; frou the C uodel

for two approprlate cases:

(a) when the Ray._elgh nu_._er is fixed at the value calculated

at cusp point If, i.e., r = rc.

(b) when the Raylelgh nuaber is varied appropriately to follow

the trend In observed valttes along the upper portion of the i

transition curve.

Case (_) corresponds to the cross-sectlon taken through the singularity

set surface of Fig. 3 for r = coast, and (b) approxlnately to the I
J

cross-section Ln the direction Vr.

The results for both cases are given on Fig. /, "._ case (a), w8 obtain

fold point curves A, B. In case (b), _ obtain fold point curves C, D.

Nultiple solutions occur in the stipled regions of both cusps ou Fig. 4. For

a flzed value of r, the region of sultiple solutions occurs entirely In the

; oyanetric flow regina. When the uqnttude of r Is varied, the r_glou of

umltiple solutions 1lea in tho wave flow retina, with the boundary (curve C)

aloq the transition curve, a comparison of the observed values of r along

the transition curve with the correspondln8 calculated values on curve C

nearby yields an average difference AsT of reaqO_y I E (F/4. 5).
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Table 2. Calculated parameter valuee for the three cusp points
i._( ;ated on Fig. 4.

!

Cusp Point

I II III

r -3-3 _ 10 3 -6.9 x 10 3 -5.2 x 10 4

h I.I x I,_ 2.3 x 103 1,8 x 104

(G*)-I 1.3 x 10-3 2.6 x 10-3 2.0 x 10-2

. ROT* 8.2 x 10 -2 8.0 x 10 -2 7.9 x 10 -2 ,

i
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. The results above are suggestive of two possible types of transitions, il

:_ In case (a), Fig. 4 indicates that the upper syum_tric flow regime, in an

annulug, might develop catastrophically when a lower symmetric flow ceases to '
/

• exist, and vice versa. Hysteresis occurs at both A and B. In case (b), Fig.

4 shows that the wave flow regime in an annulus might develop catastrophically

. when an upper symmetric flow ceases to exist, and vice versa. Hysteresis

occurs at both C and V. The conclusion for case (b) is consistent with the

evidence presented by Lather et el. (1977) that the Rossby regime in an
m

annulus might develop catastrophically when a Hadley flow ceases to exist,
s

rather than smoothly via a bifurcation. Moreover, we believe that case (b)

: may provide the best indication of the actual location of the multiple

solution regions with zespect to the tr_nsltlon curve because the Raylelgh

number has been varied in accordance with the observations.

Since multiple solutions do not occur when qv < 0 in the S model, we _!

conclude that the wave flow regime in the atuosphere might develop saoothly !i

via a blfurc4tlon froa the sy_tr£c flow regime.

Owing to obqer_,: I errors, the precise location in parameter space of J
the sy_trlc flow-wave flow transition curve Is not known. If the location

of the _arva is extremely sensitive Co small changes in the observed parameter

1 values, th_n we could imagine that a small increase (or decrease) in the

magnitude of AzT, for exanple, might cause the curve to shift substantially.

It may be possible to achieve these new values in the annulus if, for ex_Lple,

• both horizontal and vertical external temperature differe,_ces are applied to

the worklng fluld or if boundary layer temperature variations are included

when masuring AzT. These types of Investigatlons, as _II as further

sensitivity studies of the present ruult are _eded.
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4. Causes of different steady behavior of tb_ C and S models.

In Sections 2 and 3 of this article, we deteralned the steady solutions

co five-coeponent spectral models based on the geos_try of the atmosphere (S

model) and of the Laboratory cylinder (C model) respectively. Because the

, pairs (qv-qh) and (r-h) of therJal parameters control the nonllnesr behavior

in the S an_ C models, _ ,_ere able to conpare the steady solution surfaces
[

for each geoaetry. W_ found that both nodels exhibited the sane steady

behavior under e_atlcally unstable conditions, but that under statically

stable conditions, the C model possessed two cusps not found in the S model.

_ere, we investigate the possible reasons for this different steady behavor.

Both models were designed co simulate axlsymmJtrlc flows; atmospheric

flows are represented in the S model and cylindrical laboratory flows are

, !
represented in the C model. It has been suggeqted that the laboratory flows

: that are sisulaced in the C sodel yield valuable Inforsatlon about atmospheric ;

; flows. But we have shown already that the topology of the steady solution

i
: surface in stable conditions is different for the C _del than it Is Cot the

S model. Thus, we are at the very least raising some quustlons concarnlng the :
i

appllcability of the flows produced in externally forced rustle such 88 the i '
t

laboratory cylinder, to chose found in the atmosphere. L

In order to identify those factors in the parameter 8pa_ that sight be

i responsible for the existence of the r_glous of nultlple oqutZibr£a,

i exaatus the low order models further. _n what follon, we show that several

; terms say be ellalnated fron each modal without changing qualitatively the

i nature of the steady solutions. However, m do not intend to usa the _odlfladI
i versions of uch model to study the atmosphere per N. but rather to

lnveet£gate the causes o_ u_lq:,.e versus mltLplt equilibria.

The C uodel (3.12)-(3.16) reduces to 6n un£oldod mreto_ of the Loren8 i

t

node1 (Sl_Lrer and Wells, 1983) givau by _I
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If

- - .Yl - PYl + PY2 842- Ph/w 2 (4.1)

J

Y2 " - YlY3 + rYl - 72 ' (4.2)

Y3 " YlY2 - bY3 " 16_ h(3w2)-_y I , (4,3)

when the latitudinal velocity components y4,y 5 an6 rotation f* are eliminated.

The steady solution surface that we obtain from (4.1)-C4.3) is identical in

form Co the one produced by the complete C model (Fig, 2); the only change in 4

the irrotational case is that the multiple solution regions for the stable

conditions first appear near (r,h) = 4-26, _ 27 w2/_/(84_)). Thls is in

agreewnt with the results of ¥ost and Shtrer (1982). We note t.hat the scaled

versions of the parameters P and h, which were used in Sec. 3b, are not the
t

ones user, in (4.1)-(4.3). !

An analogous result is obtained for the S model. If we eliminate the

longitudinal velocity components x4,x $ and rotation f, then the S model

(2.42)-(2.46) becomes

xl " - VXlXl + 1_2x2 ' (4.4) •

vP-lx2rl •x2 " - Flxlx3 + rsxl + qh - ' (4.5) i
• I

_3 " P2xlx2 + qv " vP'Iz3r2 " (4.6)

" The steady polynomial obtained from (4.4)-(4.6) yields a single cusp in the

thermal parameter plane in agreement with Fig, 1. Hence, we conclude chat the

modified versions of the C and S models yield the same steady behavior that we

observed In the complete versions. Moreover. the velocity components and '

rotation terms that were eliminated in both models are not responsible for the
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qualltative differences in steady behavior; they contribute only to locating
jt

the cusps in the parameter space. I."
t/

A comparison of the modified C and S models reveals that thalr

differential systems are nearly identical except for the locaticm and type of/

thermal forcing. In fact, _ recall that the 5 model has internal thermal

forcing in which the heating field and temperature field share identical

i

1 elgenfunctlons. We believe that this tyl_ of forci_, vhlch was derlved from

: atmospheric observations such as those in Dutton (1976), is a reasonable

choice for an atmospheric mode1. Alternatively, the C model possesses

external thermal forcing that is manifested via /reposed temperature

differences between cb_ boundaries of the dommin.
t

It seems reasonable to expect that if the fo:clng in the S model is
5

altered to match that in th._ C model, than the three-cusp behavior of the i

cylindrical model might be reproduced in the spherical o_, Indeed, by the I

reverse ar_umeut ve might eliminate the sultip_e solution mlious oo the _ i

statically stable side of the steady solution 8urfacm in the C model.

To test Cha first hypothasis we added lnhomofeumous farms. Lt]_ those i

that contain the Hadley mmber in the C model, to the modified S model so that

_l " _2x2 " VXlXl= _hs , (4.7) I
' i

_t2 = - FlXlX3 + qh + rsSl " vP'lz2rl ' (4.8)

T

- r2%=_ + q, - _r'l%r_- %_.s1 . <4.9>

The parsmter ha. which is proporttoul to 8 Bsdley number, is 81yen by
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• _ 26 '-

_, h - ta , (4.10)

t 20 i_ in which 0° and A are defined in (4.11). The constants are

)2
- - KI - /2" ZT/_4"_(aw ), K2 = 16/(9_) and _ - sln(#). In addition, we eliminated

the scaled versions of x2 and x3 given in (2.41). To obtain (4.7)-(4.9), we

• _ reexpressed the potential temperature field in the S model, following Yost and _,

Shirer (1982), u

"y

O - 0 o + bzO z + AUB(tJ) + Ap + O • (4.11)

_ The nonllnear term in this expansion _st b_ incladed because the Fourier ,

.|
:, coefficienta for thG llnear one vanish in the S modeI, but those for the ,
t
: nonllnear term do not.

When the temperature fleld (4.11) is _ritten in this way. we know vla

Jeffrey's Theorem (Dutton. ,_ ,_) tibet notion must occur because there are

horizontal temperature differences on Lave1 surfaces. The effecte of an
-o ,}

Imposed horizontal temperature difference on the steady solutlons to a highly

truncated spectral nodal of layligh-knard convection were examined by ¥oet
[

i " and Shirer (1982). iIn the present context, the S node1 contains tern that represent both

inter_l and external forcing. EadLant and Latent heatinS rates are

represented via the internal hastlnS coefficients qh and qv" The 18tarsi

lover boundary thermal fertile accounts fnr terns that contain the p4ruJeter

he. UeinS (4.7)-(4.9), we derived the new steady polyumtlal free which

the sinEuLarlty set end the associated uultipl6 solution rqione are obtained.

The results are provided on FIs. 6 for a case in which the intern1 hutinS

I
|

1986002282-364



364
(

m

h, iii 5x ioio

t E:_
I

i ,
; '4D_-_ ! -t" "

-500
t

• eQ e e •

."... :':: ,_
•..-!.'.: !

m "%: i

• i

|

_'-5 x I0 I0 • I4

i

} F_. 6 fold pinto in tb tb_ Fitl! _ d h ¢ff_ I =1,

vtth both Lnterual 8nd ezter_l thoru_ for_Lq. For v81ueo of re8rid he inside 01 (8ttplml r_io=), three re_t roots of the steJd7

state polyuo_L81 exist, but for v_tuee of re and be outside 01. md.y I
o_ res_ root ecLsts. In tMI craig. • 0o¢ of psrstore chat tyPIfy

the esrth°s 8rJtoophll_t Nro chooeai .dopth 104 U. _ _ 5tl_.etarth i
I 6.37 x lO ° Its eddy vio_)o/ty 100 Ills A eddy d_fuoivL_7 25 u2s 1. ._

The horisoatLt and Itrt/¢_ _te_ butiq eoeffieieete yore _= V.%
to reproduce • mt _tiq rigid of I_qOdy 1°C dsy'l.

"1g8GO02282-3@5



t

4

365
i

coefficie.:a qh and qv are constant and in which the fold points are given by
|l

the valv_s of r and h To construct this figure, we have chosen values for _

F
the _arameters tha_ typify the 8t0msphere. As the figure indicates, no

qualitative __hange i_ the steady solution surface of the S until is obtained

(cost_,re the r,_terltA1 plane in Fig. 1 with Fi_:. 6). We note that the behavior

" shown |_. Fig. 6 is independent of the values of the internal forcing parameters

_h and qv" In fact, when qh " qv = 0, the sane result is obtained; this latter

case corresponds to an _ model that is externally forced on/y, as is the C

uode L.

f

Thus, tb_ hypothesis that we suggested above was Incorrect because the

topological character of the stetJy solution surface in the S _del i8

: independent of the type of thermal forcXog we choose. For all c_se8 in the S

nodal, including the exterually forced one, we find unique solutions in the i
!
!

axlsy_etrlc flow regina in stable conditions; thin suggests that transitions, |_
such u the one free the lower sym.mtric regime to the wave flow regiu, _rtll !

!
be mooch in the atsops._.ere. In contrast, two cusps appear in the externally

4 forced C nodal in stable conditions JJaplyin_ that ttudden transitions and i
hysteresis are likely within the uloymmtrtc f_ow reglm for s_fflrient

lateral lower boundary chef, tel forcln_. Thls a_so taplles that in stable

• stratlficacion transitions would be smooth when ext,trmtlly /apoeed horizontal ,

hestins is too weak. o

The exterslly forced differential systems (h.1)-(t.3) and (h.7)-(h.9) i!
i

" (with qn=qv = 0) are virtually identical exempt for quantitative differences

in the linear and nonlinear coefficients of each systen. With thl_ in sd_d,

we believe that • fundamental eaun of tim _Lt_fereuce in steady behavior s_t|ht

be the hydrostatic approLtitioa, uh£ch _ used in the spherical systm but

not in the cylindrical me, lnd_ .d, this spproxiltion is linked directly to
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the aspect ratio A and the basis functions of e_,ch system, and 8o to the

values of the constants in the S and C 8mda18. IC lw inporCant co reseaber

that in thl8 investigation _ are coaparin8 a spherical stnosp_erlc sodel and

a cylindrical laboratory one 8o that in general As<<Ac, _here the subscripts

- and c represent spherical and cylindrical gaonetrla8 respoctlvsly.

To cast the second hypothesis mntlonmd earlier, we inserted

inhologeneous tern8 into the modified C model (4.1)-(4.3) that tlitc intarmsl

forcln 8 81ailsr to char. In the simplified S uodol _ and we obtained

** Yl " - PYl + PY2 - 84_ Phlw 2 , (4.12)

Y2 " " YlY3 �tTl" Y2 + qh,v ' (4.13)

i

(3w2)-ly 13 YlY2 hy3 16_r2 h qv (4.14)

i

In (_ _." '_.), if r-h-0, then us have s version of the C nod_l that is

Interw,_ly Yorced only. Am Fig. 7 shove, in this cup no cusps appear in

stable _onditions, in rgrnesent vith th4 results obtained for the S umiel. _q

Hence, vhon both nminls are internally forced only, unique solutions occur !
, I

within the axisyunetric flow regime in each case. As 8 c¢_.seqtm_.e, em vould i

expect to _beervs mooch transitions free the Bsdley rqime to the loesby

resins in the atmosphere end the laboratory cylinder. Ic is Inportant to o

note, hoverer, that if 8 Badloy number of sufficient mq_itude L8 mLnsnrted

into the lntsrnal',y forced C aodel (i.e., (t.12)-(_.14)) then the uultiple

solution roSion8 that occur in 8 StBbly stratified fluid .my be t_overed-.

%

,I
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i " -5 x 104

• FIS. 7 Fold points in the thermal parameter plane of the aodtfied C model
rich internal thermal forcing onll.. For .:slues of q_ - qv and

• q_ = qh=v Inside _1, (Itiplad region), three real ro6ts of the steady
i_ate polynomial ex:l.sC, but for valu_aa of q9 and q_ outside ill, only
one real root exists. In this case, a eat _f paragw.tere that typify

a deep _nnulue were choeenz depth 13 ca, inner radius 2.5 ca, outer
radius 4.9S ca,, ktneaatl¢ .vCscoslty 9.6 x lO-7m2s 1, theraosetric

1.4 xconductivity ' lO-7m2e 1.

"%

1986002282-368



368

These re_ul_-s are in agreement: _Ch those of Henderson (1982) who I"

utilized &n intecnal thermal fc.'ctng mechaniser chat is based on the

atmospheric net heating fleld, in a 23-coefflclcnC spectral _del of axisym-

met.-Ic flow in the atmosphere. He found a smooth transition from the tower

symmeCrlc Co wtwe flow regimes but he was not able to find aa upper symmetric

cransiclon. We will discuss the significance of Chis result in the

concluslon.

t

|

i

|,

?

i
, I

qD

I
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5. Discussion and conclusions _j

The question of greatest concern in this study i8 whether transitions,

such as the one frou the Eadley regiae to the Rossby regime, occur tara-

. etrophically or saccthly. To begin to answer thls question, we presented

evidence that _ an atmospherlc model, but not in a laboratory one, the

qualitative nat" re of the transitions within the syumetric flow regiue itself

• is independent of the type of thermal forcing mchanlsa used. Significantly,

when an internal theraal forcing mechanism was introduced into both models, we

obtained qualitatively siailar steady behavior; this result implied that the

qualitative nature of the observed axisyuaetric flows in both the atmosphere

and appropriate laborator7 vessels would be the same. Of prlaary importance i

then Is to design laboratory experismnt8 so that the type of thermal forclng

is the same in the laboratory vessels and the ataosphere, i _

Because there is a lack of sensitivity of the steady axlsy-_etric 4
! :

behavior in the atmospheric nodal to different theraal forclng uechanisu, we

are free to adopt a convenient view of representing thermal forcing in the !

atwosphere. One view, as discussed in Sec. 4, Is that of Henderson (1982),

who utili_ed an internal ther_ial forcing mchaniea that was based on

" atmospheric observations, in a 23-coefflcient aodel of axisysme_ric flow in I

the ataosphere. He found that a mooth transition existed free the lower

syultric regi_ to the wave flow rag/M, but he was not able to locate an i I

upper syultric regime _ wu found for the annulus by Fultz e__cel. (1959).

In this study, an internal forcing uechanlsa in either uodel leads to

unique steady solutions in stable stratification, so we should expect to

observe unique solutions in exis_tric flow regimes of both the atuosphere

and the laboratory cylinder. In _ree_,t with Henderson (1982), thls /_aplles

Ig8 002282-370
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: that the cransltlo_a betveen the lover sysmetric and wave flow regines will be I!i 81_ooth,

To desonstrate, theoretically, the effects of varlo,,.s coablnatlon8 of

, internal and external thernml forcln8 on these physical systeas, _. compared

'_ the steady solutions of two _xisymetrlc low-order spectral models; these were

the S aodel, which was a quasl-hydrostetlc mDdel based on the geometgy of the
-i

atmosphere and the C model, which was a nonhydrostetic model based on the

geometr 7 of the laboratory cylinder. We found t._t the S model did not perait•
*+

muir/pie solutions in statically s_ble conditions for wLy coabinatton8 of
f

internal and external forcing parameters. In contrast, the C model pern_Ltted
•

multiple solutions in a eta'ely stratified £1utd only vhen eTt=_ually imposed

horizontal be-.tlng of sufficient magnitude was lncorporeted.

I

When the modified C and S models were externally forced only, their t
', j
i differential 8ystens appeared natheaetlce117 Identical except for differences

i. In the magnltudes of the constants in each systea. The qua_t!tatlva i
-!

differences, which are responsible ultlmately for the qualitative dlffereuce8 _:

i in steady behavior, were attributed to the hydrostatic approxlmatlon, wtLich ?

•{ was used in the S uodel but not In the C model; this wproxLmat!on restricted _ .}

t the choice of suitable basis functions mid specified an appropriate range of i
, aspect reties in the S s_del. When both aodels were _rimJrlly imteru_lly - 1

forced (that t8, there was either _uk or no external forc£n8), no mltipla

solutions were found for either case In stable eondltlons, and the qualltatLve _

nature of the axleymltrlc flows was the m.

The ruulte above can be _nsral/sed to the atmosphere and to the

correxpoudln_ cylindrical laboratory _Joele. Sines all coubinations of

fore.tLq peranetere in the S uodel led to unique eolutLone J_ the eximyumetrLc
a

t
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flow regime in stable stratlflcatton, we infer that transitions between the

Hadley and Rossby regimes in the 6tmosphere are likely to be smooth. In li

contrast, sufficient lateral lower boundary thermal forcing in the C model led .

to two regions of multiple solutions in a stably stratified fluid. Because of

the proximity of the associated fold point curves to the upper portion of the

symmecrlc flow-wave flow transition curve in Fultz er el. (1959), we expect to

observe sudden transitlous and hysteresis between the upper sy_etrlc and

• wave flow regimes in the laboratory annulus. However, both the S and C models

suggest smooth transitions between the lower symmetric regime, where the

lateral lower boundary thermal forclng is relatively weak, and the wave flow

regime in the atmosphere and the laboratory cylinder. It is important to

note that, because we are not able to find the actual transition curve here,

these results do not confllct wlth the concluslon of Miller and Gall (1983),
t

who found no analog of the upper symmetric regime In their numerical model of

a rotating hemispherical configuration.
t

The problem then is not the view of the forcing of the atmosphere that we

adopt, but instead the adequacy of modellng Its effects in the Laboratory [
!

analogue. Indeed. we have noted that for_tng a Laboratory vessel primarily i
J

Internally presents a technological problem because internal mchanlsas are _ '
@

dlfflculC to apply experimentally without also applylng external forcing. But

if Internal forcing is cruclal, then the results obtained from externally

forced laboratory repllca8 might not explain properly the manner by which i
4

regi_ transitions occur in the internally forced atmosphere.

If we are Interested in sodellng the atmosphere, then based on the

resuZts obtained _ere (and those of Henderson (1982) and Miller and GaZ1

_1983)), it e_pears that --upper symmetric tre:ssitXonsay not be relevant.

Indeed, both the Sand C modeZe 8uUast a emooth transition frouthe lower
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symmetric to wave flow regimes when they are tnternally forced. In this ca_e,

laboratory vessels with adequate Internal forcing mechanisms hxve the greatest I,_

utillty for studying both the axlsymet-tc flows and the transitions from them

to the wavy ones that would be expected in the atmosphere. However, if we are

interested in modeling the upper symmetric transition, then as we saw in

Sec. 3, an externall 7 forced laboratory a_nulus is suitable.

5

I
i

Y

' i

i

5
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Appendlm A

Solutions to Linear Problems f_om (2.10)-(2.14).

Three suitable !tnear problems from (2.10)-(2.14) are

vV2D - VH2W - - yD , (A.1.)

vV2w - 3-Z:= 0 (A.I.2)
3z '

D = - _w (A.I.3) m

5

V2T " - AT , (A.2)

and

V2a:" - r_: • (A.3) 1
1
t

In problems (A.1) and (A.3), we have eliminated rotation to preserve the _ i
" i

self-adJoint property and to minimize the difficulty of determining the basis

functions. The problems (A.2) and (A.3) are merely the classical problems for

1 Laplace' s operator, j
j To facilitate the method used to solve (A.I), we combine (A.l.1)-(A.l.3) 4

into a single fourth-order equation in the w-component, given by t

V4v + X _32v - 0 . (A.4)

,_ v _z 2 ,_

j "_

• The four no-slip boundary conditions that are mecmssary co solve (A.4) are _i
4

given in (2.17)-(2.18).

t
mmm,_lm. ....... _ .- mT .1_. " I II_ .... -_..-- _ , ]
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We solve (A.4) by using separation of variables. The solution for w_

given by w(_,z) - P(p)'W(z) in the axtsymmetric model, Is composed of the ii
assocla_ed Legendre functions and a vertlcal function. We substitute thls

solution Into (A.4) and utilize the orthonoraallty of the Legendre functions

to obtain the characteristic equation

_2W

n n 2 ' (k,5)
_z

where L is the self-adJolnt differential operator
n

_2 _4
Ln - Cn2 - 2¢n---- +_ (A.6)

_z2 _z 4 ' i

and _n Yn/v en n(n+l)/a2" 18 t _ !e

From general knowledge of linear homogeneous differential equations with

constant coefficients, we know that W (z) - exp(rnZ/Z T) is a solution to (A.5)
n i

for suitable values of r. The associated characteristic equation is
!
i

COg)+=-_-:< ) +,n21e_pCrn >- 0 , CA.7) _
• t

and Its roots ar_
.T

IZT (_n2 4¢n2)I/2

t

rn(1) . ± ia n . ± _ C_ n _ . )i12 , ()_A.8_
42 _

_nd i

(21 . . ± tB n . ± LZT C_n �(_n2. 4 ¢n2)'/2) 1/2 (A.9) '
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where =n = In 2_ n. In (A.8) and (A.9) we note that for 2s complex valued

roots (± at,± _n ) there are s complex conjugate pairs denoted by (r (!) (2)_' n m_ N I °

Since the eigenvalues I are positive and real, It is easy go demonstraten

>0 and that (± an,± Bn) are real (Higgins 1983). The roots r(I) andthat _n ' n

r(2) become complex conjugate pairs _ lan and ± IBn so that the basisn

functions are combinations of trigonometric functions.

Because In is positive, two different _olutions to (A.5) are possible,

depending on n. For n-0, the roots (A.8) and (A.9) are ao=0 and Bo-Zr(Io)l/2.

This yields a general solution of the form

No(Z) ~ A+ B_+ C exp(t Bo _) + D exp (-£Bo _) . (A.IO)

We apply the boundary conditions (2.17)-(2.18) to (A.10) and set the i

determinant of the matrix of coefficients to zero to obtain : {
r

8oSin(Bo)/2 = l-coS(_o) , (A.II)

The solutions to (A. II) are osCalned graphically b_ plotting f(So) - BoSXn(Bo)/2 "_

and g(B o) = l-cos(8 o) for _o>0. The mth vertical basis function _0(z), subject

to the boundary conditions, Is

where

!
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II,

K'- z-_OSoo(B°_) J'o oInC_m}-B" ' (^.13)

and the constant _a remains arbitrary. The first two even and fl st two oddO

vertical modes of basis functions _0(z) and their orthogonal derivatives do(z)

are given in Flg. A.l. No att;upt has been made to nermallze the basis

functions because determination of the analytleal expression takes considerable

effort.

When n_0, the roots (A.8} and (A.9) satisfy the condition an_O , Bn._ ,
_mF

an_Bn , and the general solution becomes

{

Proceeding as before, ve find that a n and Bn satllfy the _quatton i

_n an _n a
{Sntan(_-) - antan(_--)}{antan{_--) - Bntan{_) ) - 0 , (A.15) ..

I II %

• in which term I produces the even functions and term II produces the odd I
i

functions. C--a_hLcal solutions are obtsInsd, as In the previous case, and the

mth vertical basis function _n' subject to the boundary conditions, Is t

o

II

�_c.,°{,:_, -_ .,_{-;_,} • ,.,,,

l,

]986002282-378
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wLth

= ; (A.17)
n •

Itn(,:)---_"n iln(cl:)

cl._

the constant Ca remains arbitrary.n

Expressions (A.12) and (A.I_) /_eld the lunctlons Wm(z) for all Integern

v values of u and n. These recults allow us to calcul&te the vertical basis

s
functions On(Z) for the scaled pressu.e variable w t _ the usual dlqnoetLc way.

If _A.1.3) Is substltuted Into (A.l.l) then

VH2W - - (vV2+ y _)_zv . (A.18)

If a separable solution of the fo.1 w(_,s) - P(_)'o(s) is used In -onJunction I

with the solution for w(_,s), then (A.18) becomes

- [
_Wn_ ¥n

o:(s) "_n as2_" (_2__. ¢n) _+--¢a _'s " (1.19)

This expression descctbas the vertical dependence of the scsltd pressure . i

variable w.
i

The vertical basls functions re- dLveraanca D are determlnmd directly f:oa

(A.1.3). We use s uparabl_ solution of the form D(p.s) - P(p)'l_S) _Lon41 trLth

the solution for v(U,s) to obta£n the wrtlcal IxmIs functions

1986002282-380
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aw-
u( n

Xn z) " -_ • (A.20)

The orthonormal, vertical lmsi_ functions in (A.12), (A.16), (A.19) and

(A.20) for w,w and D respectively, have an associated ordered sequence of

unique, real elgenvalues te_,._1,_ toward infinity (e.g., LIdyzhenskaya, 1969).

Moreo_--r, they complete a representation of the spectral expanPions for w, D and

w, that can be written as

!
w (_,.,t) l'n(w)w"':" (A.21)

D (_,,,t) - [ _ a_(t) -P(_)-- (,) . (A.n)
mn i

Is

, (_,g,t) Pn(_)on(z) (A.Z3) ,,
t

[

,.

To solve (A.2), we choose • separable, f')lUtlO4t of the form :(,:z) " !

P(_)'_(r). Al'ter substitution of this _olutlou Into (_.2), _m flnd

l
" i

where we have used CM definition ru - nu/¢. With • solution for #n(s) of the

form _.(s) ~ szp(rnz l_), we obca:J.n

_.(s) ~ A,uq,(l_vu)l/Z.) + • .zp(-l(vn)l/zs) , (L.n)

sad va - r a .- ca" The boudsry coaditio_ ¢?.20) _ epplLed _fcer i

d/ffereatiatin8 (A.25) with mpect to s; this yJLelds the equatLo_ I
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(_)i/2(^+e,:InC(_)I/2_)- 0 . (,.26)

Equation (A.2O) is satisfied If (Vn)1/2 - 0 or (Vn)I/2 - - mw/ZT. In the
0

first case, the eigenvalues are Fn - cn' and in the second case, the

elgenvalues ere Fa = + (mS/ZT)2. The correspondln8 vertlcal basis function• fl £n

In the flrst case Is

0 , don ' (1.27)

for toO, where do is s constant usoclated wlth each horlzontal function ¥0 . r_
n n

In the second case

s

It .II . Z .

_n = dn cos_aw _) , (1.28)

for nO0. The basts functions (A.27) and (A.28) spec£fy the vertical dependence ii

of the scaled potentlal teaperature. The coaplete spectral expansion In the

axlsylaetrlc model is

,<,.,._). y.y.b:<. _#,>,_.(,> �_b° on Pn0n " (1.29)
Is n n

Finally, we solve the 11near vortieity problea (1.3) via the use mthod

that was used to obtain the basts functions for scaled potentlal teaperature.

With the boundary conditions (2.1 o) and a separable solutlon for ¢ of the

fore _(_,s) - P(U)'_(s), _ find

<.

I r T -
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and vn " r n - t n. The bo,mdary conditions (2.20) are applied after

differentiating (A.25) with respect to z; this yields the equation J

(_n)Z/2(A+B)sinC(vn)Z/2Z_) - 0 . (A.26)

(Vn)1/2 (vn) 1/2Equation (A.26) is satisfied if -0 or -- awl_ r. In the
0

first ease, the e£genvaXues are Fn - on, and in the second case, the

eXgenvalues are .,a= (aW/ZT)2."n _n + The corresponding vertical basis function

in the first case is

,

'nO= dOn ' (A.27) ":

for mS, where do is a constant associated with each horlzontal _nction yO • !n n

In the second case _
t

i
?

, _n " n eos(_ , (A.28) _

for _0. The basis functions (A.27) and (&.28) specify the vertical dependence --

• iof the scaIed potential temperature. The complete spectral expansion in the

axi_,_-mmetrlc s_lel Is
t

0 0
,<,,,,_ - __ b'<,)_<.),'<,)+_b._.,. . <_.2,)

i II n u
]

Finally, we solve the linear vortlcity l_Toblea (1.3) vLa the mine ulthod
|

that wa8 used to obtain the basis functions for sealed potential temperature. !

WithformC(u,z)theboundary.P(ul.)(zl,C°ndtti°nstmflN(2"lg) and a separable solution for C of the l_ !
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_:(z) - e: sin(aw _) , (A.30)

for u>O_ the constan_ ea ia arbitrary. _no Lt_nva1_u ere'n

8

m . (_)2
" An ¢n + ' (A.31)

and An _ v. Equstion (A.30) specifies the vertical dependence of vorticity

_. The complete b_ectral expansion in the _Isymmetric model 18

_;(u,s,t) " [ [ cm(t)_,e(,) ,_ (,) . (A.3Z) :
18 U

l

o
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Apl_endix B

Coefflciencs In (2.42)-(2.46).

Because the spectral coupouents (2.41) are modified, the definitions o£

the interaction co_fflclents In the flve-coefflcleu¢ model (2.36)-(2.40) are
aodlfed. The new defLnL_ions are

-121 r (_)1/2sz" zz"211"T , (B.z)

B2. ZT_zz2 3.r (_)1/2112 2 , (B.2)

_121

Oz. _zzz .L_.r(_.)z/2Z'r 4_2 ' (s.3)

"*"27. " 4 _ + ,
a w a (]1.4) I

22 , (]1.5) i !

_110 5 ;. ,
F1 "- ZT r202 "_" r(2)°1/2 , (]1.6)

_101 $ 112
Y2 = ZT "220 "_ r(2) , (]1.7)

r " ig ,
(]1.8) ,

Jz "'_ "-_ (z5) "z/zw , (]1.9) I
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12 4_(Z5)-1/2 (R.IO)
J2 " ZT J21 "

Zn the Interaction coefficients above I" = 32/15.

I
The definitions for the etsenvaluee in (2.36)-(2.40) become A1 - A2 .

1 . 2 0 and r2 112 " A1 ' A3 A1 ' 1"1 " F2 " _0 " We also noes chat: the heating

coefficients in (2.36)-(2.40) are g£ven by

0
qh " q2 ' (B.11)

and

qv " q0 " (B.].2)

-- i,+I,h _ +2h -2h -!, h2he d3 ].%2h710 2%% $hTh86117%3 7 10

d2" 2h4h7% ' (a.x8)
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dI .. h2hThg+hsh72-h6h72-h3h72h9 , (B.19) ii

do - h4h72 (B.20)P

and

h1 - D1Blf12J22vX2 , (B.21)

f

h2 - _2J1J2v_ 2 , (B.22) |t

h 3 - v(El+_ 1) , (B.23)
i

h4 - gE2vP'lr2qh , (B.24) :

h$ - gE2vP-lr2r8 , (ID.25) i'

h6 nm_2_% Ip ('o_6) t i!

. v2xzx3 , (n.27) J
J

% - sin 2 , (n.28) !

• t

119- v2P'2rlr2 , (B.29)

%o" rlr2 • (m._o) ,J
!
!

.i

,,,._

,aamunumm,__ - *

- . :_ -_ j_ .....,.,..-_ _. ._
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Appendix C

Coefftclents of the Steady Polynomlal (3.21).

j The definitions for the coefflclenCs Jt t i = I-9, that appear In the

steady polynoalal (3.21) are

Jl " 8(3w2)-l(2b)l/2 , (C.1)

" 1+(p,)2J2 " b( ) , (c.2)

.I3--b , (c.3) I '

q

; J4 " b , (¢.4)

t 1
t J 5 - 8"21/2b3/2(3+(p*)2) (3w2) -1 , (C.5)

l 36 " (F*b)2 ' (¢.6)• J7 " " (Peb)2 ' (C.7)

J8 = b2 ' (C.8)

I" i'J9 = 8. l/2(peI2b$/2v'2 , (C.9)

where b - 4(1+£ 2) I and pe=p&.
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